• 제목/요약/키워드: low-cycle fatigue property

검색결과 17건 처리시간 0.024초

Fe-29%Ni-17%Co 저열팽창 합금의 피로 특성에 미치는 알파상의 영향 (Effects of Alpha Phase on the Fatigue Properties of Fe-29%Ni-17%Co Low Thermal Expansion Alloy)

  • 김민종;권진한;조규상;이기안
    • 한국재료학회지
    • /
    • 제24권9호
    • /
    • pp.481-487
    • /
    • 2014
  • The effect of alpha phase on the fatigue properties of Fe-29%Ni-17%Co low thermal expansion alloy was investigated. Two kinds of alloys (Base alloy and Alpha alloy) were prepared by controlling the minimal alloy composition. Microstructure observation, tensile, high-cycle fatigue, and low-cycle fatigue results were measured in this study. The Base alloy microstructure showed typical austenite ${\gamma}$ phase. Alpha alloy represented the dispersed phase in the austenite ${\gamma}$ matrix. As a result of tensile testing, Alpha alloy was found to have higher strengths (Y.S. & T.S.) and lower elongation compared to those of the Base alloy. High cycle fatigue results showed that Alpha alloy had a higher fatigue limit (360MPa) than that (330MPa) of the Base alloy. The Alpha alloy exhibited the superior high cycle fatigue property in all of the fatigue stress conditions. SEM fractography results showed that the alpha phase could act to effectively retard both fatigue crack initiation and crack propagation. In the case of low-cycle fatigue, the Base alloy had longer fatigue life in the high plastic strain amplitude region and the Alpha alloy showed better fatigue property only in the low plastic strain amplitude region. The fatigue deformation behavior of the Fe-29%Ni-17%Co alloy was also discussed as related with its microstructure.

자동차휠용 A356 알루미늄 합금의 주조조직이 피로특성에 미치는 영향 (Effect of Cast Microstructure on Fatigue Behaviors of A356 Aluminum Alloy for Automotive Wheel)

  • 송전영;박중철;안용식
    • 한국주조공학회지
    • /
    • 제30권1호
    • /
    • pp.46-51
    • /
    • 2010
  • Recently, automotive industry is attempting to replace steels for automotive parts with light-weight alloys such as aluminum alloy, because of the growing environmental regulations governing exhaust gas and the engine effectiveness of a vehicle. The low cycle fatigue (LCF) and high cycle fatigue (HCF) properties as well as the microstructure and tensile property were investigated on the low pressure cast A356 aluminum alloy wheel, which was followed by T6 heat treatment. The cast microstructure of the alloy influenced significantly on the low cycle and high cycle fatigue behaviors. The rim part of cast aluminum alloy wheel showed higher low cycle and high cycle fatigue strength compared with the spoke part, which should be caused by higher cooling rate of rim part. The spoke part of the wheel showed coarser dendrite arm spacing (DAS) and wide eutectic zone in the microstructure, which resulted in the partial brittle fracture and lower fatigue life time.

Procedural steps for reliability evaluation of ultrasonically welded REBCO coated conductor lap-joints under low cycle fatigue test condition

  • Michael De Leon;Mark Angelo Diaz;Hyung-Seop Shin
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제25권4호
    • /
    • pp.28-31
    • /
    • 2023
  • This study presents a comprehensive procedure for the low cycle fatigue test of ultrasonically welded (UW) coated conductor (CC) lap-joints. The entire process is examined in detail, from the robust fabrication of the UW REBCO CC joints to the reliability testing under a low number of repeated cycle fatigue conditions. A continuous Ic measurement system enables real-time monitoring of Ic variations throughout the fatigue tests. The study aims to provide a step-by-step procedure that involves joint fabrication, electromechanical property (EMP) tests under uniaxial tension for stress level determination, and subsequent low-cycle fatigue tests. The joints are fabricated using a hybrid method that combines UW with adding In-Sn soldering, achieving a flux-free hybrid welding approach (UW-HW flux-free). The selected conditions for the low cycle fatigue tests include a stress ratio of R=0.1 and a frequency of 0.02 Hz. The results reveal some insights into the fatigue behavior, irreversible changes, and cumulative damage in the CC joints.

Rapid S-N type life estimation for low cycle fatigue of high-strength steels at a low ambient temperature

  • Feng, Liuyang;Qian, Xudong
    • Steel and Composite Structures
    • /
    • 제33권6호
    • /
    • pp.777-792
    • /
    • 2019
  • This paper presents a new efficient approach to estimate the S-N type fatigue life assessment curve for S550 high strength steels under low-cycle actions at -60℃. The proposed approach combines a single set of monotonic tension test and one set of fatigue tests to determine the key material damage parameters in the continuum damage mechanics framework. The experimental program in this study examines both the material response under low-cycle actions. The microstructural mechanisms revealed by the Scanning Electron Microscopy (SEM) at the low temperature, furthermore, characterizes the effect due to different strain ratios and low temperature on the low-cycle fatigue life of S550 steels. Anchored on the experimental results, this study validates the S-N curve determined from the proposed approach. The S-N type curve determined from one set of fatigue tests and one set of monotonic tension tests estimates the fatigue life of all specimens under different strain ratios satisfactorily.

A356 합금의 고주기 피로특성에 미치는 미소기공율의 영향 (Effect of Microporosity on High Cycle Fatigue Property of A356 Alloy)

  • 류석종;이충도
    • 한국주조공학회지
    • /
    • 제31권4호
    • /
    • pp.198-204
    • /
    • 2011
  • The present study was aimed to investigate the dependence of fatigue property on microporosity variation of low-pressure die-cast (LPDC) A356 alloy. The fatigue property of A356 alloy was evaluated through high cycle fatigue test, and the microporosity-terms used were the fractographic porosity measured from SEM observation on fractured surface and the volumetric porosity obtained through the density measurement using Archimedes's principle. The number of cycles to failure of A356 alloys depends obviously upon the variation of fractographic porosity, and can describe in terms of the defect susceptibility which depends on the microporosity variation at a given value of stress amplitude. The modified Basquin's equation was suggested through the combination of microporosity variation and static maximum tensile stress to fatigue strength coefficient. Using modified Basquin's equation, it could suggest that the maximum values of fatigue strength coefficient and exponent achievable in defect-free condition of A356 alloy are 265 MPa, -0.07, respectively.

윤활환경에 따라 발생하는 소성변형량과 저주기 피로물성을 이용한 스커핑 수명 예측 (The Prediction of Scuffing Life due to Plastic Deformation and Low-cycle Fatigue Properties Under Various Lubricated Conditions)

  • 김병주;이영제
    • Tribology and Lubricants
    • /
    • 제14권4호
    • /
    • pp.7-14
    • /
    • 1998
  • A correlation between the low-cycle fatigue life and the scuffing-failure life is demonstrated using the plastic strain increment in boundary lubricated sliding. Loadings proportional to hardness with three different lubricated conditions were used to evaluate the plastic strain increments. As the results of scuffing tests using vacuum pump oils in nitrogen gas, plastic strain increment shows 0.0062, and in the mineral oils and commercial engine oils in air, plastic strain increments show 0.0042 and 0.00092. Those are very useful to describe quantitatively the real lubricated sliding conditions, and are very effective to find the relation between the low-cycle fatigue life and the scuffing-failure life.

자동차 부품용 내열 알루미늄 합금의 고온 피로 변형 거동 (High Temperature Fatigue Deformation Behavior of Automotive Heat Resistant Aluminum Alloys)

  • 박종수;성시영;한범석;정창렬;이기안
    • 대한금속재료학회지
    • /
    • 제48권1호
    • /
    • pp.28-38
    • /
    • 2010
  • High temperature high cycle and low cycle fatigue deformation behavior of automotive heat resistant aluminum alloys (A356 and A319 based) were investigated in this study. The microstructures of both alloys were composed of primary Al-Si dendrite and eutectic Si phase. However, the size and distribution for eutectic Si phase varied: a coarse and inhomogeneous distributed was observed in alloy B (A319 based). A brittle intermethallic phase of ${\alpha}-Fe\;Al_{12}(Fe,Mn)_3Si_2$ was detected only in B alloy. Alloy B exhibited high fatigue life only under a high stress amplitued condition in the high cycle fatigue results, whereas alloy A showed high fatigue life when stress was lowered. With regard to the low-cycle fatigue result ($250^{\circ}C$) showing higher fatigue life as ductility increased, alloy A demonstrated higher fatigue life under all of the strain amplitude conditions. Fractographic observations showed that large porosities and pores near the outside surface could be the main factor in the formation of fatigue cracks. In alloy B. micro-cracks were formed in both the brittle intermetallic and coarse Si phasese. These micro-cracks then coalesced together and provided a path for fatigue crack propagation. From the observation of the differences in microstructure and fractography of these two automotive alloys, the authors attempt to explain the high-temperature fatigue deformation behavior of heat resistant aluminum alloys.

비선형 이동 경화모델을 이용한 십자형 필릿 용접부의 변형율 해석 (Notch Strain Analysis of Cruciform Welded Joint using Nonlinear Kinematic Hardening Model)

  • 김유일;김경수
    • 대한조선학회논문집
    • /
    • 제50권1호
    • /
    • pp.41-48
    • /
    • 2013
  • Several fatigue damages have recently been reported which cannot be resolved in the context of the existing fatigue design procedure, and they are suspected to be the cracks induced by the low cycle fatigue mechanism. To tackle the problem, a series of material tests together with fatigue tests have been carried out, and elasto-plastic notch strain analysis using nonlinear kinematic hardening model has been performed. The cyclic stress-strain curves are obtained and the nonlinear kinematic hardening model was calibrated based on the obtained material data. Also, the fatigue test with non-load-carrying cruciform fillet welded joint has been performed in low cycle fatigue regime. Then, the notch strain analyses have been carried out to find the precise elasto-plastic behavior of the material at the notch root of the cruciform joint. The variation of the material property from the base metal via HAZ up to the weld metal was taken into account using spatial variation of the material property. Then the detail elasto-plastic behavior of the welded joint subjected to the repeated cyclic loading has been investigated further through the comparison with the prediction with Neuber's rule. The calibration of the nonlinear kinematic hardening model and nonlinear notch strain analyses have been performed using the commercial FE program ABAQUS.

열간 성형된 보론강판의 저주기 피로 특성 (Low-Cycle Fatigue in Quenched Boron Steel Sheet Due to Hot Stamping)

  • 장원석;서창희;오상균;김동배;성지현;정윤철;김영석
    • 대한기계학회논문집A
    • /
    • 제34권10호
    • /
    • pp.1419-1425
    • /
    • 2010
  • 열간성형된 보론강판은 고강도특성이 필요한 자동차 부품에 널리 적용되고 있으며, 최근에는 샤시 부품에도 점차로 적용되고 있다. 샤시 부품으로 적용되기 위해서 고강도 특성뿐만 아니라 내피로특성이 동시에 요구되고 있어, 본 연구에서 열간성형된 보론강판의 저주기 피로특성을 연구하였다. 저주기 피로시험결과, 총변형률 진폭이 낮은 영역에서는 열간성형된 보론강의 피로수명이 현저히 높았지만, 높은 총변형률 진폭에서는 열간성형된 보론강의 마르텐사이트 조직특성인 낮은 연성과 파괴인성으로 인해서 보론강 원소재의 피로수명이 더 높음을 확인할 수 있었다.