• Title/Summary/Keyword: low water potential

Search Result 819, Processing Time 0.039 seconds

Monitoring of Endocrine Disruptor-suspected Pesticide Residues in Greenhouse Soils and Evaluation of Their Leachability to Groundwater (시설재배 토양 중 내분비계장애 추정농약의 잔류 모니터링 및 지하수 용탈 가능성)

  • Noh, Hyun-Ho;Lee, Kwang-Hun;Lee, Jae-Yun;Park, Hyo-Kyung;Lee, Eun-Young;Hong, Su-Myung;Park, Young-Soon;Kyung, Kee-Sung
    • The Korean Journal of Pesticide Science
    • /
    • v.15 no.4
    • /
    • pp.441-452
    • /
    • 2011
  • This study was carried out to survey the residual characteristics of endocrine disruptor (ED)-suspected pesticides in greenhouse soils and assess their leachabilites to groundwater. Greenhouse soils were collected from 40 sites of greenhouse in 2008 in Korea. Sixteen ED-suspected pesticides which had been using in Korea, such as alachlor, benomyl, carbaryl, cypermethrin, 2,4-D, dicofol, endosulfan, fenvalerate, malathion, mancozeb, metribuzin, metiram, methomyl, parathion, trifluralin, and vinclozolin, in the soils, were analyzed by chromatographic methods using GLC-ECD and HPLC-DAD/FLD. Limits of detection (LODs) of the test pesticides ranged from 0.0004 to 0.005 mg/kg. Recoveries of the target pesticides from soil ranged from 72.69 to 115.28%. Four pesticides including cypermethrin were detected in the range of from 0.001 to 2.019 mg/kg, representing that their detection rate from greenhouse soils was 37.5%. The highest detection rate was observed from endosulfan which was detected from 16 site soils of the total samples, indicating that endosulfan is persistent in soil because of its very low mobility and high adsorption characteristics in soil. Based on the groundwater ubiquity scores (GUSs) of the pesticides detected from greenhouse soils, most of them have little possibilities of groundwater contamination except the fungicide vinclozolin with some leaching potential because of high water solubility and very low soil adsorption property.

Size measurement of electrosprayed droplets using shadowgraph visualization method (Shadowgraph 가시화 기법을 활용한 정전분무액적의 크기 측정)

  • Oh, Min-Jeong;Kim, Sung-Hyun;Lee, Myong-Hwa
    • Particle and aerosol research
    • /
    • v.13 no.4
    • /
    • pp.151-158
    • /
    • 2017
  • Electrostatic precipitator is widely used to remove particulate matters in indoor air and industrial flue gas due to low pressure drop and high collection efficiency. However, it has a low collection efficiency for the submicrometer sized particles. Electrospraying is a potential method to increase the particle charging efficiency, which results in increased collection efficiency. Although particle charging efficiency is highly dependent upon droplet size, the effective measuring method of the droplets is still uncertain. Tap water was electrosprayed in this study, and the images of electrosprayed droplets were taken with a high speed camera coupled with several visualization methods in order to measure the droplets size. The droplet size distribution was determined by an image processing with an image-J program. As a result, a droplet measured by a laser visualization, had a half size of that by a Xenon light visualization. In addition, the experimentally measured droplet sizes were a good agreement with the predicted values suggested by $Fern{\acute{a}}ndez$ de la Mora and Loscertales(1994).

Characteristics of Hydrography and Tidal Current in Hampyung Bay, the Western Coast of Korea (서해 함평만의 해수 물성구조 및 조류 특성)

  • Lee, Kyeong-Sig;Jun, Sue-Kyung
    • Journal of the Korean earth science society
    • /
    • v.30 no.2
    • /
    • pp.247-256
    • /
    • 2009
  • Characteristics of hydrography and tidal currents were investigated in Hampyung Bay through in situ CTD data, tidal currents and elevations. According to the seasonal weather variability, hydrography showed the lower density with high temperature and low salinity in summer and the higher density with low temperature and high salinity in winter. In particular, the thermal structure like a tidal front was formed along the central channel at the neap tide of summer. The critical value of the parameter $SH(=log_{10}(H/U^3)$ where H is depth and U is $M_2$ tidal current amplitude) representing the formation position of tidal front was estimated from 2.4 to 3.5. In addition, the potential energy anomaly $({\phi})$ was ranged between 0.985 and 6.998 Joule/$m^3$, which gradually increased from the mouth into the inner bay. This front may be caused by the unique topography with wide tidal flat and the local difference of tidal current strength. The observed tidal currents at the mouth of bay showed that the ebb time was shorter than the flood time with the increase of depth. This asymmetric ebb-tide dominance is interpreted as a result of tidal distortion by the development of a shallow-water-constituent in Hampyung Bay with a wide macro-tidal flat.

Performance Evaluation of Aqueous Organic Redox Flow Battery Using Methylene Blue and Vanadium Redox Couple (메틸렌블루와 바나듐을 활물질로 활용한 수계 유기 레독스 흐름 전지의 성능 평가)

  • Lee, Wonmi;Kwon, Yongchai
    • Korean Chemical Engineering Research
    • /
    • v.56 no.6
    • /
    • pp.890-894
    • /
    • 2018
  • In this study, methylene blue which is one of dye materials was introduced as active material for aqueous redox flow battery. The redox potential of methylene blue was shifted to negative direction as pH increased. The full-cell performance was evaluated by using methylene blue as the negative active material and vanadium as the positive active material with acid supporting electrolytes. The cell voltage of methylene $blue/V^{4+}$ is very low (0.45 V). In addition, the maximum solubility of methylene blue in water is only 0.12 M. Therefore, the cell test was performed with very low concentration (0.0015 M methylene blue, $0.15M\;V^{4+}$) at first time. Cut-off voltage range was 0 to 0.8 V and $1mA{\cdot}cm^{-2}$ current density was adopted during cycling. As a result, current efficiency (CE) was 99.67%, voltage efficiency (VE), 88.83% and energy efficiency (EE) was 85.87% and discharge capacity was ($0.0500Ah{\cdot}L^{-1}$) at 4 cycle. In addition, the cell test was performed with increased concentration (0.1 M methylene blue, $0.15M\;V^{4+}$) with $10mA{\cdot}cm^{-2}$ current density, leading to higher discharge capacity ($3.8122Ah{\cdot}L^{-1}$) with similar efficiency (CE=99%, VE=85%, EE=85% at 4 cycle).

Assessment on Impact Factor for Dehydration of Mine Drainage Sludge Using Flocculant and Dewatering Tube(KOMIR-Tube System) (응집제 및 탈수튜브(KOMIR-Tube 시스템)를 활용한 광산배수 슬러지 탈수 영향인자 평가)

  • Misun Park;Juin Ko;Gwanin Bak;Seunghan Baek
    • Economic and Environmental Geology
    • /
    • v.57 no.2
    • /
    • pp.263-270
    • /
    • 2024
  • In this study, impact factors for dehydration with KOMIR-Tube system using flocculant and dewatering tube were evaluated for mine drainage sludges. The experiments were conducted on semi-active facility sludges with water contents above 90 % using KOMIR-Tube system. The flocculant and input amount were determined from laboratory experiment and the dewatering efficiency was verified onsite experiment. The sludge characteristics were identified by instrumental analysis such as zeta potential measurement, particle size analysis, XRD, XRF and SEM-EDS. Selection of flocculants for sludge dewatering treatment need to consider not only precipitated rate but also filterated rate. Floc size has to keep at least 0.7 mm. From on-site experiments, sludge dewatering using KOMIR-Tube system suggests to carry out April and May that is low rainfall and humidity considering to climate conditions. Also, dewatering rate depends on the crystal degree of mineral that mainly makes up sludges. Particularly, goethite of the iron hydroxides has better dewatering rate than ferrihydrite. Ferrihydrite is low degree of crystallinity and uncleared or broad shaped crystal, goethite is good crystallinity with needle shaped crystal so that the effect of flocculation and dewatering showed to depend on the crystal. In results, impact factors of dewatering for mine drainage sludges are related to flocculant, climate, crystallinity and shape of iron hydroxides.

Distributional characteristics of risky phytoplankton species at inner and outer sites around Incheon seaport of Korea (인천항 내, 외에서 식물플랑크톤 위해종의 분포특성)

  • Kwon, Oh Youn;Kang, Jung-Hoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.11
    • /
    • pp.6958-6965
    • /
    • 2014
  • This study examined the occurring pattern of potential risky species and the related abiotic factors for port-specific environmental management considering the control of ballast water-induced foreign species at Incheon seaport. From a total of 62 species observed during the study, 13 red-tide and 7 toxic phytoplankton, normally occurring species in Korean waters, occurred from the seasonal investigation at the inner and outer sites of the Incheon seaport from 2007 to 2009. The number of potential risky phytoplankton was relatively high at the outer site of the port during summer and winter. Red-tide species, such as Skeletonema spp., Thalassiosira nordenskioldii, and Paralia sulcata, dominated the total standing crops at the inner site (avg. 72.4%) and outer site (avg. 77.6%) in spring and summer, being positively correlated with the concentrations of total suspended solids (TSS) and pH (p<0.05). In summer, the red-tide species (Skeletonema spp.) and toxic species (Alexandrium catenella, A. tamarense, Dinophysis acuminata and Pseudo-nitzschia spp.) co-dominated (avg. 74.2%) at the inner site, while Skeletonema spp. and P. sulcata predominated (avg. 67.2%) at the outer site. During the study periods, the toxic species were significantly and positively correlated with the chemical oxygen demand (COD), dissolved inorganic nitrogen, silicate and phosphate (p < 0.05). The chlorophyll-a (chl-a) concentration of phytoplankton at the outer site ranged from 1.49 to $5.46{\mu}g/L$ on average, which was 3-5 times higher than that at the inner site in spring, summer and autumn, whereas there was no difference in the concentration between inner (avg. $0.94{\mu}g/L$) and outer (avg. $0.95{\mu}g/L$) sites in winter. In summary, diverse red-tide species dominated and a relatively high chl-a concentration existed at the outer site, whereas a relatively high number of toxic species and low chl-a concentration was observed at the inner site in summer. The potential risky species can outbreak in association with the concentration of nutrients, COD and TSS, suggesting that distinctive management of potential risky species is needed considering the environmental characteristics of Incheon seaport.

Reproductive Phenology of Four Korean Seagrasses, Zostera caespitosa, Z. caulescens, Z. japonica and Z. marina (한국산 해초 포기거머리말, 수거머리말, 애기거머리말과 거머리말의 생물계절학)

  • Lee, Sung-Mi;Lee, Sang-Yong;Choi, Chung-Il
    • Ocean and Polar Research
    • /
    • v.27 no.2
    • /
    • pp.125-133
    • /
    • 2005
  • This study described the phonology and reproductive potential of four species of Korean seagrasses, Zostera caespitosa, Z. caulescem, Z. Japonica and Z. marina. Z. caespitosa and Z. caulescens sampled from a mixed stand at the subtidal area of Yulpo Bay, Geojedo of the South Sea of Korea in November 2002 and August 2003. Z japonica and Z. marina occurred at the depth between the middle intertidal and shallow subtidal (<1m below mean sea level) of Seungbongdo (in Yellow Sea) samples collected in February and October 2003. The sexual reproductive phase of the four Zostera species was apparently different in timing of flowering, reproductive period, fruiting and seed maturing. Z. caespitosa flowered from February to early May $(10-16^{\circ}C)$, and its seed production completed in early May. The reproductive shoots of Z. caulescens began to appear in January $(9^{\circ}C)$, and its flowering followed from February to June $(10-19^{\circ}C)$. The flowers of Z. japonica were observed from July to September $(18-22^{\circ}C)$, and its seeds matured from August to September. The most commonly I marina flowered from April to August $(7-21^{\circ}C)$ and developed into seeds in July. Z. caulescens, the largest plant, had the highest number of seeds per shoot and longest spadix length. Z. marina, which was intermediate In size, recorded the highest reproductive potential. The study indicates that the reproductive phase and potential of the four species of seagrass from Korea are highly related to water temperature, and the populations of these species show a perennial lifespan with a low sexual reproductive input.

Effects of an Artificial Habitat Creation of Menyanthes trifoliata L. Using Planting Module (식재모듈을 활용한 조름나물(Menyanthes trifoliata L.) 인공서식지 조성의 효과)

  • Heo, Jinok;Kim, Heung-Tae;Kim, Cheol Min;Bae, Yeon Jae;Kim, Jae Geun
    • Journal of Wetlands Research
    • /
    • v.17 no.1
    • /
    • pp.53-61
    • /
    • 2015
  • Habitat creation for endangered species Menyanthes trifoliata L. using planting module represents a habitat type such as the rhizome grows horizontally to open water at the margin of the lake. The objectives of this mesocosm experiment are habitat creation with easy construction and low management effort, and to investigate the potential of providing a habitat for aquatic macroinvertebrates. Planting modules had three different substrates of bed soil, perlite and K-SOIL (artificial lightweight soil using bottom ash). These modules were established in two different size of the tub($1170{\times}2250{\times}300mm^3$, $900{\times}1360{\times}190mm^3$). According to the monitoring results, number of leaves and coverage of M. trifoliata showed significant difference with substrate and tub size. The number of leaves showed similar growth responses in bed soil (mean 22.979) and K-SOIL (mean 28.042) substrates but growth was poor in perlite substrate (mean 1.667). The number of leaves in the large tub was more than small tub (p=0.015). Similar responses were obtained with the coverage, the length of rhizome and the number of rhizome in M. trifoliata. A total of 21 taxa of aquatic macroinvertebrates including 1,145 individuals was found in the mesocosm. The Shannon diversity index and colonization index in the mesocosm were similar to the previous studies. These results suggest that the experimental mesocosm could provide sufficient habitats for aquatic macroinvertebrates. If planting modules use bed soil or K-SOIL by planting substrate, establish that taking into account open water surfaces for M. trifoliata growth and manage about 30cm of water depth control, then habitat creation for M. trifoilata will be successful.

유청단백질로 만들어진 식품포장재에 관한 연구

  • Kim, Seong-Ju
    • 한국유가공학회:학술대회논문집
    • /
    • 2002.04a
    • /
    • pp.59-60
    • /
    • 2002
  • Edible films such as wax coatings, sugar and chocolate covers, and sausage casings, have been used in food applications for years$^{(1)}$ However, interest in edible films and biodegradable polymers has been renewed due to concerns about the environment, a need to reduce the quantity of disposable packaging, and demand by the consumer for higher quality food products. Edible films can function as secondary packaging materials to enhance food quality and reduce the amount of traditional packaging needed. For example, edible films can serve to enhance food quality by acting as moisture and gas barriers, thus, providing protection to a food product after the primary packaging is opened. Edible films are not meant to replace synthetic packaging materials; instead, they provide the potential as food packagings where traditional synthetic or biodegradable plastics cannot function. For instance, edible films can be used as convenient soluble pouches containing single-servings for products such as instant noodles and soup/seasoning combination. In the food industry, they can be used as ingredient delivery systems for delivering pre-measured ingredients during processing. Edible films also can provide the food processors with a variety of new opportunities for product development and processing. Depends on materials of edible films, they also can be sources of nutritional supplements. Especially, whey proteins have excellent amino acid balance while some edible films resources lack adequate amount of certain amino acids, for example, soy protein is low in methionine and wheat flour is low in lysine$^{(2)}$. Whey proteins have a surplus of the essential amino acid lysine, threonine, methionine and isoleucine. Thus, the idea of using whey protein-based films to individually pack cereal products, which often deficient in these amino acids, become very attractive$^{(3)}$. Whey is a by-product of cheese manufacturing and much of annual production is not utilized$^{(4)}$. Development of edible films from whey protein is one of the ways to recover whey from dairy industry waste. Whey proteins as raw materials of film production can be obtained at inexpensive cost. I hypothesize that it is possible to make whey protein-based edible films with improved moisture barrier properties without significantly altering other properties by producing whey protein/lipid emulsion films and these films will be suitable far food applications. The fellowing are the specific otjectives of this research: 1. Develop whey protein/lipid emulsion edible films and determine their microstructures, barrier (moisture and oxygen) and mechanical (tensile strength and elongation) properties. 2. Study the nature of interactions involved in the formation and stability of the films. 3. Investigate thermal properties, heat sealability, and sealing properties of the films. 4. Demonstrate suitability of their application in foods as packaging materials. Methodologies were developed to produce edible films from whey protein isolate (WPI) and concentrate (WPC), and film-forming procedure was optimized. Lipids, butter fat (BF) and candelilla wax (CW), were added into film-forming solutions to produce whey protein/lipid emulsion edible films. Significant reduction in water vapor and oxygen permeabilities of the films could be achieved upon addition of BF and CW. Mechanical properties were also influenced by the lipid type. Microstructures of the films accounted for the differences in their barrier and mechanical properties. Studies with bond-dissociating agents indicated that disulfide and hydrogen bonds, cooperatively, were the primary forces involved in the formation and stability of whey protein/lipid emulsion films. Contribution of hydrophobic interactions was secondary. Thermal properties of the films were studied using differential scanning calorimetry, and the results were used to optimize heat-sealing conditions for the films. Electron spectroscopy for chemical analysis (ESCA) was used to study the nature of the interfacial interaction of sealed films. All films were heat sealable and showed good seal strengths while the plasticizer type influenced optimum heat-sealing temperatures of the films, 130$^{\circ}$C for sorbitol-plasticized WPI films and 110$^{\circ}$C for glycerol-plasticized WPI films. ESCA spectra showed that the main interactions responsible for the heat-sealed joint of whey protein-based edible films were hydrogen bonds and covalent bonds involving C-0-H and N-C components. Finally, solubility in water, moisture contents, moisture sorption isotherms and sensory attributes (using a trained sensory panel) of the films were determined. Solubility was influenced primarily by the plasticizer in the films, and the higher the plasticizer content, the greater was the solubility of the films in water. Moisture contents of the films showed a strong relationship with moisture sorption isotherm properties of the films. Lower moisture content of the films resulted in lower equilibrium moisture contents at all aw levels. Sensory evaluation of the films revealed that no distinctive odor existed in WPI films. All films tested showed slight sweetness and adhesiveness. Films with lipids were scored as being opaque while films without lipids were scored to be clear. Whey protein/lipid emulsion edible films may be suitable for packaging of powder mix and should be suitable for packaging of non-hygroscopic foods$^{(5,6,7,8,)}$.

  • PDF

Lipolytic Effect of Sparassis crispa Extracts in Differentiated 3T3-L1 Cells and High Fat Diet-induced Obese Mice (분화된 3T3-L1 세포와 비만유도 쥐에 꽃송이버섯 추출물의 지질분해 효과)

  • Lee, Mi-Ae;Park, Jin-Kyung;Um, Mi-Hyang;Jeon, Jung-Woo;Lee, Jung-Min;Park, Yoo-Kyoung
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.41 no.12
    • /
    • pp.1708-1715
    • /
    • 2012
  • The purpose of this study was to investigate whether water extracts of Sparassis crispa (SC) have anti-obesity effects. Treatment of mature adipocytes with SC caused a decrease in lipid accumulation (assessed by Oil Red O staining) and an increase in glycerol release. Mice were induced to obesity by a high fat diet (45% fat in total kcal) and experimental groups were treated with two different dosages of SC extracts, a low SC (LSC, 100 mg/kg/day) or high SC (HSC, 300 mg/kg/day). SC extracts were administered by gavages for 10 weeks in the experimental groups, while the control group was fed with distilled water. The body weight gain of mice fed SC was significantly reduced (11.88% lower in LSC, 14.54% lower in HSC) compared to the control group. Additionally, there were significantly reduced serum levels of triglycerides (13.57% lower in LSC, 19.46% lower in HSC), total cholesterol (32.22% lower in LSC, 24.67% lower in HSC) and glucose (28.85% lower in LSC, 25.82% lower in HSC) in mice fed SC compared to the control group. Hepatic triglycerides in mice fed SC were lower (9.68% lower in LSC, 14.24% lower in HSC) than the control group and total cholesterol levels were also lower in mice fed SC (38.72% lower in LSC, 35.20% in HSC). These results demonstrate that the water extract of SC may enhance lipolysis and up-regulate the expression of lipolytic enzymes in vitro and reduce body weight in vivo. These significant effects were found for both low and high doses of SC treatment, and suggest SC can be used as potential therapeutic substances for the prevention and treatment of obesity.