• Title/Summary/Keyword: low tin

Search Result 437, Processing Time 0.066 seconds

Carrier Transport of Quantum Dot LED with Low-Work Function PEIE Polymer

  • Lee, Kyu Seung;Son, Dong Ick;Son, Suyeon;Shin, Dong Heon;Bae, Sukang;Choi, Won Kook
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.432.2-432.2
    • /
    • 2014
  • Recently, colloidal core/shell type quantum dots lighting-emitting diodes (QDLEDs) have been extensively studied and developed for the future of optoelectronic applications. In the work, we fabricate an inverted CdSe/ZnS quantum dot (QD) based light-emitting diodes (QDLED)[1]. In order to reduce work function of indium tin oxide (ITO) electrode for inverted structure, a very thin (<10 nm) polyethylenimine ethoxylated (PEIE) is used as surface modifier[2] instead of conventional metal oxide electron injection layer. The PEIE layer substantially reduces the work function of ITO electrodes which is estimated to be 3.08 eV by ultraviolet photoemission spectroscopy (UPS). From transmission electron microscopy (TEM) study, CdSe/ZnS QDs are uniformly distributed and formed by a monolayer on PEIE layer. In this inverted QD LED, two kinds of hybrid organic materials, [poly (9,9-di-n-octyl-fluorene-alt-benzothiadiazolo)(F8BT) + poly(N,N'-bis (4-butylphenyl)-N,N'-bis(phenyl)benzidine (poly-TPD)] and [4,4'-N,N'-dicarbazole-biphenyl (CBP) + poly-TPD], were adopted as hole transport layer having high highest occupied molecular orbital (HOMO) level for improving hole transport ability. At a low-operating voltage of 8 V, the device emits orange and red spectral radiation with high brightness up to 2450 and 1420 cd/m2, and luminance efficacy of 1.4 cd/A and 0.89 cd/A, respectively, at 7 V applied bias. Also, the carrier transport mechanisms for the QD LEDs are described by using several models to fit the experimental I-V data.

  • PDF

Reactive sputtered tin adhesion for wastewater treatment of BDD electrodes (TiN 중간층을 이용한 수처리용 BDD 전극)

  • KIM, Seo-Han;KIM, Shin;KIM, Tae-Hun;SONG, Pung-Keun
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2017.05a
    • /
    • pp.69-69
    • /
    • 2017
  • For several decades, industrial processes consume a huge amount of raw water for various objects that consequently results in the generation of large amounts of wastewater. There effluents are mainly treated by conventional technologies such are aerobic, anaerobic treatment and chemical coagulation. But, there processes are not suitable for eliminating all hazardous chemical compounds form wastewater and generate a large amount of toxic sludge. Therefore, other processes have been studied and applied together with these techniques to enhance purification results. These techniques include photocatalysis, absorption, advanced oxidation processes, and ozonation, but also have their own drawbacks. In recent years, electrochemical techniques have received attention as wastewater treatment process that show higher purification results and low toxic sludge. There are many kinds of electrode materials for electrochemical process, among them, boron doped diamond (BDD) attracts attention due to good chemical and electrochemical stability, long lifetime and wide potential window that necessary properties for anode electrode. So, there are many researches about high quality BDD, among them, researches are focused BDD on Si substrate. But, Si substrate is hard to apply electrode application due to the brittleness and low life time. And other substrates are also not suitable for wastewater treatment electrode due to high cost. To solve these problems, Ti has been candidate as substrate in consideration of cost and properties. But there are critical issues about adhesion that must be overcome to apply Ti as substrate. In this study, to overcome this problem, TiN interlayer is introduced between BDD and Ti substrate. TiN has higher electrical and thermal conductivity, melting point, and similar crystalline structure with diamond. The TiN interlayer was deposited by reactive DC magnetron sputtering (DCMS) with thickness of 50 nm, $1{\mu}m$. The microstructure of BDD films with TiN interlayer were estimated by FE-SEM and XRD. There are no significant differences in surface grain size despite of various interlayer. In wastewater treatment results, the BDD electrode with TiN (50nm) showed the highest electrolysis speed at livestock wastewater treatment experiments. It is thought to be that TiN with thickness of 50 nm successfully suppressed formation of TiC that harmful to adhesion. And TiN with thickness of $1{\mu}m$ cannot suppress TiC formation.

  • PDF

Effect of the substrate temperature on the properties of transparent conductive IZTO films prepared by pulsed DC magnetron sputtering

  • Ko, Yoon-Duk;Kim, Joo-Yeob;Joung, Hong-Chan;Son, Dong-Jin;Choi, Byung-Hyun;Kim, Young-Sung
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.167-167
    • /
    • 2010
  • Indium tin oxide (ITO) has been widely used as transparent conductive oxides (TCOs) for transparent electrodes of various optoelectronic devices, such as liquid crystal displays (LCD) and organic light emitting diodes (OLED). However, indium has become increasingly expensive and rare because of its limited resources. In addition, ITO thin films have some problems for OLED and flexible displays, such as imperfect work function, chemical instability, and high deposition temperature. Therefore, multi-component TCO materials have been reported as anode materials. Among the various materials, IZTO thin films have been gained much attention as anode materials due to their high work function, good conductivity, high transparency and low deposition temperature. IZTO thin films with a thickness of 200nm were deposited on Corning glass substrate at different substrate temperature by pulsed DC magnetron sputtering with a sintered ceramic target of IZTO (In2O3 70 wt%, ZnO 15 wt%, SnO2 15 wt%). We investigated the electrical, optical, structural properties of IZTO thin films. As the substrate temperature is increased, the electrical properties of IZTO are improved. All IZTO thin films have good optical properties, which showed an average of transmittance over 80%. These IZTO thin films were used to fabricate organic light emitting diodes (OLEDs) as anode and the device performances studied. As a result, IZTO has utility value of TCO electrode although it reduced indium and we expect it is possible for the IZTO to apply to flexible display due to the low processing temperature.

  • PDF

Improving Conductivity of Metal Grids by Controlling Sintering Process (배선 함몰 전극의 배선 소결공정 최적화에 따른 전기적 특성 향상)

  • Ahn, Wonmin;Jung, Sunghoon;Kim, Do-Geun
    • Journal of the Korean institute of surface engineering
    • /
    • v.48 no.4
    • /
    • pp.158-162
    • /
    • 2015
  • To substitute indium tin oxide (ITO), many substituents have been studied such as metal nanowires, carbon based materials, 2D materials, and conducting polymers. These materials are not good enough to apply to an electrode because theses exhibit relatively high resistance. So metal grids are required as an additionalelectrode to improve the conductivities of substituents. The metal grids were printed by electrohydrodynamic printing system using Ag nanoparticle based ink. The Ag grids showed high uniformity and the line width was about $10{\mu}m$. The Ag nanoparticles are surrounded by dispersants such as unimolecular and polymer to prevent aggregation between Ag nanoparticles. The dispersants lead to low conductivity of Ag grids. Thus, the sintering process of Ag nanoparticles is strongly recommended to remove dispersants and connect each nanoparticles. For sintering process, the interface and microstructure of the Ag grid were controlled in 1.0 torr Ar atmosphere at aound $400^{\circ}C$ of temperature. From the sintering process, the uniformity of the Ag grid was improved and the defects on the Ag grids were reduced. As a result, the resistivity of Ag grid was greatly reduced up to $5.03({\pm}0.10){\times}10^{-6}{\Omega}{\cdot}cm$. The metal grids embedded substrates containing low pressure Ar sintered Ag grids showed 90.4% of transmittance in visible range with $0.43{\Omega}/{\square}$ of sheet resistance.

Preparation and characterization of silver nanowire transparent electrodes using shear-coating (Shear-coating을 사용한 은 나노와이어 투명 전극 제조 및 특성 분석)

  • Cho, Kyung Soo;Hong, Ki-Ha;Park, Joon Sik;Chung, Choong-Heui
    • Journal of the Korean institute of surface engineering
    • /
    • v.53 no.4
    • /
    • pp.182-189
    • /
    • 2020
  • Indium tin oxide (ITO) used a transparent electrode of a photoelectric device has a low sheet resistance and a high transmittance. However, ITO is disadvantageous in that the process cost is expensive, and the process time is long. Silver nanowires (AgNWs) transparent electrodes are based on a low cost solution process. In addition, it has attracted attention as a next-generation transparent electrode material that replaces ITO because it has similar electrical and optical characteristic to ITO, it is noted as a. AgNW thin films are mainly produced by spin-coating. However, the spin-coating process has a disadvantage of high material loss. In this study, the material loss was reduced by using about 2~10 ㎕ of AgNW solution on a (25 × 25) ㎟ substrate using the shear-coating method. It was also possible to align AgNWs in the drag direction by dragging the meniscus of the solution. The electro-optical properties of the AgNW thin film were adjusted by changing the experimental parameters that the amount of AgNWs suspension, the gap between the substrate and the blade, and the coating speed. As a result, AgNW thin films with a transmittance of 90.7 % at a wavelength of 550 nm and a sheet resistance of 15 Ω/□ was deposited and exhibited similar properties to similar AgNW transparent electrodes studied by other researchers.

The effect of $Ar\;+\;H_2$ Plasma on the Low Temperature ITO Film Synthesized on Polymer (폴리머 기판상에 합성된 저온 ITO 박막에 미치는 $Ar\;+\;H_2$ 플라즈마의 영향)

  • Moon, Chang-S.;Chung, Yun-M.;Lee, Ho-Y.;Kim, Yong-M.;Kim, Kab-S.;Gaillard, M.;Han, Jeon-G.
    • Journal of the Korean institute of surface engineering
    • /
    • v.39 no.5
    • /
    • pp.206-209
    • /
    • 2006
  • Indium tin oxide (ITO) films were synthesized on polymer (PES, polyethersulfone) at room temperature by pulsed DC magnetron sputtering. By the control of introducing hydrogen to argon atmosphere, the resistivity of ITO films was obtained at $5.27\;{\times}\;10^{-4}\;{\Omega}{\cdot}cm$ without substrate heating in comparison with $2.65\;{\times}\;10{-3}\;{\Omega}{\cdot}cm$ under hydrogen free condition. ITO film synthesized at Ar condition was changed from amorphous to crystalline. These result from the enhancement of electron temperature in $Ar\;+\;H_2$ plasma, which induces the increase of ionization of target materials and argon. The dominant increase of ions such as In II and O II and neutral Sn I was monitored by optical emission spectroscopy (OES). Thermal energy required for the crystalline film formation is compensated by kinetic energy transfer through ion bombardments to substrate.

Electrical and Optical Study of PLED & OLEDS Structures

  • Mohammed, BOUANATI Sidi;SARI, N. E. CHABANE;Selma, MOSTEFA KARA
    • Transactions on Electrical and Electronic Materials
    • /
    • v.16 no.3
    • /
    • pp.124-129
    • /
    • 2015
  • Organic electronics are the domain in which the components and circuits are made of organic materials. This new electronics help to realize electronic and optoelectronic devices on flexible substrates. In recent years, organic materials have replaced conventional semiconductors in many electronic components such as, organic light-emitting diodes (OLEDs), organic field-effect transistors (OFETs) and organic photovoltaic (OPVs). It is well known that organic light emitting diodes (OLEDs) have many advantages in comparison with inorganic light-emitting diodes LEDs. These advantages include the low price of manufacturing, large area of electroluminescent display, uniform emission and lower the requirement for power. The aim of this paper is to model polymer LEDs and OLEDs made with small molecules for studying the electrical and optical characteristics. The purpose of this modeling process is, to obtain information about the running of OLEDs, as well as, the injection and charge transport mechanisms. The first simulation structure used in this paper is a mono layer device; typically consisting of the poly (2-methoxy-5(2'-ethyl) hexoxy-phenylenevinylene) (MEH-PPV) polymer sandwiched between an anode with a high work function, usually an indium tin oxide (ITO) substrate, and a cathode with a relatively low work function, such as Al. Electrons will then be injected from the cathode and recombine with electron holes injected from the anode, emitting light. In the second structure, we replaced MEH-PPV by tris (8-hydroxyquinolinato) aluminum (Alq3). This simulation uses, the Poole-Frenkel -like mobility model and the Langevin bimolecular recombination model as the transport and recombination mechanism. These models are enabled in ATLAS- SILVACO. To optimize OLED performance, we propose to change some parameters in this device, such as doping concentration, thickness and electrode materials.

Influence of Refrigeration Oil on Evaporation Heat Transfer Characteristics of R-290 Inside Micro Fin Tube (마이크로 휜 증발관내 냉매 R-290의 열전달 특성에 미치는 냉동유의 영향)

  • Park, Cheol-Min;An, Young-Tae;Lee, Wook-Hyun;Kim, Jeung-Hoon;Kim, Jong-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.7
    • /
    • pp.938-944
    • /
    • 2000
  • Recently, micro fin tube is widely used to heat exchanger for high performance. And, as the alternative refrigerants for R-22, hydrocarbons such as R-290, R-600 and R-600a are very promising because of their low GWP and ODP. Thus, R-290 was used as working fluid in this study. Most design of heat exchanger had been based on heat transfer characteristics of pure refrigerant although refrigerant oil exists in the refrigeration cycles. So, the influence of oil on heat transfer characteristics have to be considered for investigating exact evaporation heat transfer characteristics. But, this is an unresolved problem of refrigeration heat transfer. Therefore the influence of the refrigeration oil to the evaporation heat transfer characteristics of R-290 were conducted in a horizontal micro tin tube. The mineral oil was used as refrigeration oil. The experimental apparatus consisted of a basic refrigeration cycle and a system for oil concentration measurement. Test conditions are as the follows; evaporation temperature $5^{\circ}C$, mass velocity 100 $kg/m^2s$, heat flux 10 $kW/m^2$, oil concentration 0, 1.3, 3.3, 5.7 wt.%, and quality $0.07{\sim}1.0$. When refrigeration oil was entered, oil foaming was observed at the low quality region. And, very small bubbles were observed as quality was increased. Pressure drop and heat transfer coefficient increased as the concentration of refrigeration oil increased to 5 wt.%.. The performance index of heat exchanger was the highest near 3.3 wt.%.

Cache memory system for high performance CPU with 4GHz (4Ghz 고성능 CPU 위한 캐시 메모리 시스템)

  • Jung, Bo-Sung;Lee, Jung-Hoon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.18 no.2
    • /
    • pp.1-8
    • /
    • 2013
  • TIn this paper, we propose a high performance L1 cache structure on the high clock CPU of 4GHz. The proposed cache memory consists of three parts, i.e., a direct-mapped cache to support fast access time, a two-way set associative buffer to exploit temporal locality, and a buffer-select table. The most recently accessed data is stored in the direct-mapped cache. If a data has a high probability of a repeated reference, when the data is replaced from the direct-mapped cache, the data is selectively stored into the two-way set associative buffer. For the high performance and low power consumption, we propose an one way among two ways set associative buffer is selectively accessed based on the buffer-select table(BST). According to simulation results, Energy $^*$ Delay product can improve about 45%, 70% and 75% compared with a direct mapped cache, a four-way set associative cache, and a victim cache with two times more space respectively.

Low Cost Alcoholic Breath Sensor Based on SnO2 Modified with CNTs and Graphene

  • Morsy, M.;Yahia, I. S.;Zahran, H.Y.;Ibrahim, M.
    • Journal of the Korean Physical Society
    • /
    • v.73 no.10
    • /
    • pp.1437-1443
    • /
    • 2018
  • In this work, $SnO_2$ modified with reduced graphene oxide (rGO) and carbon nanotubes (CNTs) separately and combined sensitized by using the co-precipitation method and their sensing behavior toward ethanol vapor at room temperature were investigated. An interdigitated electrode (IDE) gold substrate is very expensive compared to a fluorine doped tin oxide (FTO) substrate; hence, we used the latter to reduce the fabrication cost. The structure and the morphology of the studied materials were characterized by using differential thermal analyses (DTA) and thermogravimetric analysis (TGA), transmission electron microscope (TEM), X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, Brunauer-Emmett-Teller surface area and Barrett-Joyner-Halenda (BJH) pore size measurements. The studied composites were subjected to ethanol in its gas phase at concentrations from 10 to 200 ppm. The present composites showed high-performance sensitivity for many reasons: the incorporation of $SnO_2$ and CNTs which prevents the agglomeration of rGO sheets, the formation of a 3D mesopourus structure and an increase in the surface area. The decoration with rGO and CNTs led to more active sites, such as vacancies, which increased the adsorption of ethanol gas. In addition, the mesopore structure and the nano size of the $SnO_2$ particles allowed an efficient diffusion of gases to the active sites. Based on these results, the present composites should be considered as efficient and low-cost sensors for alcohol.