Browse > Article
http://dx.doi.org/10.3938/jkps.73.1437

Low Cost Alcoholic Breath Sensor Based on SnO2 Modified with CNTs and Graphene  

Morsy, M. (Building Physics and Environment Institute, Housing & Building National Research Center (HBRC))
Yahia, I. S. (Advanced Functional Materials & Optoelectronic Laboratory (AFMOL), Physics Department, Faculty of Science, King Khalid University)
Zahran, H.Y. (Advanced Functional Materials & Optoelectronic Laboratory (AFMOL), Physics Department, Faculty of Science, King Khalid University)
Ibrahim, M. (Spectroscopy Department, National Research Centre)
Abstract
In this work, $SnO_2$ modified with reduced graphene oxide (rGO) and carbon nanotubes (CNTs) separately and combined sensitized by using the co-precipitation method and their sensing behavior toward ethanol vapor at room temperature were investigated. An interdigitated electrode (IDE) gold substrate is very expensive compared to a fluorine doped tin oxide (FTO) substrate; hence, we used the latter to reduce the fabrication cost. The structure and the morphology of the studied materials were characterized by using differential thermal analyses (DTA) and thermogravimetric analysis (TGA), transmission electron microscope (TEM), X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, Brunauer-Emmett-Teller surface area and Barrett-Joyner-Halenda (BJH) pore size measurements. The studied composites were subjected to ethanol in its gas phase at concentrations from 10 to 200 ppm. The present composites showed high-performance sensitivity for many reasons: the incorporation of $SnO_2$ and CNTs which prevents the agglomeration of rGO sheets, the formation of a 3D mesopourus structure and an increase in the surface area. The decoration with rGO and CNTs led to more active sites, such as vacancies, which increased the adsorption of ethanol gas. In addition, the mesopore structure and the nano size of the $SnO_2$ particles allowed an efficient diffusion of gases to the active sites. Based on these results, the present composites should be considered as efficient and low-cost sensors for alcohol.
Keywords
Gas sensor; Ethanol; Carbon nano-materials; FTIR; Thermal analysis;
Citations & Related Records
연도 인용수 순위
  • Reference
1 G. Yi, B. Xing, H. Zeng, X. Wang, C. Zhang, J. Cao and L. Chen, J. Nanomaterials 2017, 1 (2017).
2 A. Benchirouf, C. Muller and O. Kanoun, Nanoscale Res. Lett. 11, 1 (2016).   DOI
3 H. W. Cheong and M. J. Lee, J. Ceram. Process. Res. 7, 183 (2006).
4 D. Zhang, J. Liu, H. Chang, A. Liu and B. Xia, RSC Adv. 5, 18666 (2015).   DOI
5 S. Nagirnyak and T. Dontsova, Nano Res. Appl. 3, 1 (2017).
6 S. Leonardi, Chemosensors 5, 17 (2017).   DOI
7 Z. Wang, H. Shang, R. Zhao, X. Xing and Y. Wang, J. Nanostruct. 7, 103 (2017).
8 F. Wang, H. Li, Z. Yuan, Y. Sun, F. Chang, H. Deng, L. Xiea and H. Lic, RSC Adv. 6, 79343 (2016).   DOI
9 M. Guziewicz, P. Klataa, J. Grochowski, K. Golaszewska, E. Kaminskaa, J. Z. Domagala, B. A. Witkowskib, M. Kandylac, Ch. Chatzimanolisd, M. Kompitsas and A. Piotrowska, Procedia Eng. 47, 746 (2012).   DOI
10 Y. Xiao, Q. Yang, Z. Wang, R. Zhang, Y. Gao, P. Sun, Y. Sun and G. Lu, Sens. Actuators B Chem. 227, 419 (2016).   DOI
11 M. Arvani, H. M. Aliha, A. A. Khodadadi and Y. Mortazavi, Sci. Iran. C 24, 3033 (2017).
12 H. Gao, L. Zhao, L. Wang, P. Sun, H. Lu, F. Liu, X. Chuai and G. Lu, Sens. Actuators B Chem. 255, 3505 (2018).   DOI
13 X. Li, Y. Chang and Y. Long, Mater. Sci. Eng. C 32, 817 (2012).   DOI
14 C. Marichy, P. A. Russo, M. Latino, J. P. Tessonnier, M. G. Willinger, N. Donato, G. Neri and N. Pinna, J. Phys. Chem. C 117, 19729 (2013).
15 H. Elhaes, A. Fakhry and M. Ibrahim, Materials Today: Proceedings, 3, 2483 (2016).   DOI
16 P. A. Russo, N. Donato, S. G. Leonardi, Baek, D. E Conte, G. Neri and N. Pinna, Angew. Chemie - Int. Ed. 51, 11053 (2012).   DOI
17 S. A. El-Khodary, G. M. El-Enany, M. El-Okr and M. Ibrahim, Synth Met. 233, 41 (2017).   DOI
18 C. A. Zito, T. M. Perfecto and D. P. Volanti, Sens. Actuators B Chem. 244, 466 (2017).   DOI
19 B. Yuliarto, G. Gumilar and N. L. W. Septiani, Adv. Mater. Sci. Eng 2015, 1 (2015).
20 S. S. Varghese, S. H. Varghese, S. Swaminathan, K. K. Singh and V. Mittal 4, 651 (2015).   DOI
21 Y. Wei, G. Yi, Y. Xu, L. Zhou, X. Wang, J. Cao, G. Sun, Z. Chen, B. Hari and Z. Zhang, J. Mater. Sci. Mater. Electron 28, 17049 (2017).   DOI
22 A. Yang, X. Tao, R. Wang, S. Lee and C. Surya, Appl. Phys. Lett. 91, 133110 (2007).   DOI
23 D. Zhang, A. Liu, H. Chang and B. Xia, RSC Adv. 5, 3016 (2015).   DOI
24 S. A. El-Khodary, G. M. El-Enany, M. El-Okr and M. Ibrahim, Electrochim. Acta 150, 269 (2014).   DOI
25 M. Morsy, M. Helal, M. El-Okr, and M. Ibrahim, Spectrochim. Acta - Part A Mol. Biomol. Spectrosc. 132, 594 (2014).   DOI
26 X. Yu, Q. Wu, H. Zhang, G. Zeng, W. Li, Y. Qian, Y. Li, G. Yang and M. Chen, Materials (Basel) 11, 1 (2017).   DOI
27 S. K. Sami, J. Y. Seo, S-E. Hyeon, M. S. A. Shershah, P-J. Yoo and C. H. Chung, RSC Adv. 8, 4182 (2018).   DOI
28 H. Du, P. J. Yao, Y. Sun, J. Wang, H. Wang and N. Yu, Sens. 17, 1822 (2017).   DOI
29 S. Xu, F. Sun, S. Yang, Z. Pan, J. Long and F. Gu, Sci. Rep. 5, 1 (2015).
30 G. Korotcenkov, Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 139, 1 (2007).   DOI
31 T. Wang, D. Huang, Z. Yang, S. Xu, G. He, X. Li, N. Hu, G. Yin, D. He and L. Zhang, Nano-Micro Lett. 8, 95 (2016).   DOI
32 M. Morsy, M. Helal, M. El-Okr and M. Ibrahim, Der Pharma Chem. 7, 139 (2015).