DOI QR코드

DOI QR Code

Low Cost Alcoholic Breath Sensor Based on SnO2 Modified with CNTs and Graphene

  • Morsy, M. (Building Physics and Environment Institute, Housing & Building National Research Center (HBRC)) ;
  • Yahia, I. S. (Advanced Functional Materials & Optoelectronic Laboratory (AFMOL), Physics Department, Faculty of Science, King Khalid University) ;
  • Zahran, H.Y. (Advanced Functional Materials & Optoelectronic Laboratory (AFMOL), Physics Department, Faculty of Science, King Khalid University) ;
  • Ibrahim, M. (Spectroscopy Department, National Research Centre)
  • Received : 2018.05.24
  • Accepted : 2018.06.25
  • Published : 2018.11.30

Abstract

In this work, $SnO_2$ modified with reduced graphene oxide (rGO) and carbon nanotubes (CNTs) separately and combined sensitized by using the co-precipitation method and their sensing behavior toward ethanol vapor at room temperature were investigated. An interdigitated electrode (IDE) gold substrate is very expensive compared to a fluorine doped tin oxide (FTO) substrate; hence, we used the latter to reduce the fabrication cost. The structure and the morphology of the studied materials were characterized by using differential thermal analyses (DTA) and thermogravimetric analysis (TGA), transmission electron microscope (TEM), X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, Brunauer-Emmett-Teller surface area and Barrett-Joyner-Halenda (BJH) pore size measurements. The studied composites were subjected to ethanol in its gas phase at concentrations from 10 to 200 ppm. The present composites showed high-performance sensitivity for many reasons: the incorporation of $SnO_2$ and CNTs which prevents the agglomeration of rGO sheets, the formation of a 3D mesopourus structure and an increase in the surface area. The decoration with rGO and CNTs led to more active sites, such as vacancies, which increased the adsorption of ethanol gas. In addition, the mesopore structure and the nano size of the $SnO_2$ particles allowed an efficient diffusion of gases to the active sites. Based on these results, the present composites should be considered as efficient and low-cost sensors for alcohol.

Keywords

Acknowledgement

Supported by : King Khalid University

References

  1. A. Benchirouf, C. Muller and O. Kanoun, Nanoscale Res. Lett. 11, 1 (2016). https://doi.org/10.1186/s11671-015-1209-4
  2. H. W. Cheong and M. J. Lee, J. Ceram. Process. Res. 7, 183 (2006).
  3. D. Zhang, J. Liu, H. Chang, A. Liu and B. Xia, RSC Adv. 5, 18666 (2015). https://doi.org/10.1039/C4RA14611E
  4. S. Nagirnyak and T. Dontsova, Nano Res. Appl. 3, 1 (2017).
  5. S. Leonardi, Chemosensors 5, 17 (2017). https://doi.org/10.3390/chemosensors5020017
  6. Z. Wang, H. Shang, R. Zhao, X. Xing and Y. Wang, J. Nanostruct. 7, 103 (2017).
  7. F. Wang, H. Li, Z. Yuan, Y. Sun, F. Chang, H. Deng, L. Xiea and H. Lic, RSC Adv. 6, 79343 (2016). https://doi.org/10.1039/C6RA13876D
  8. M. Guziewicz, P. Klataa, J. Grochowski, K. Golaszewska, E. Kaminskaa, J. Z. Domagala, B. A. Witkowskib, M. Kandylac, Ch. Chatzimanolisd, M. Kompitsas and A. Piotrowska, Procedia Eng. 47, 746 (2012). https://doi.org/10.1016/j.proeng.2012.09.255
  9. Y. Xiao, Q. Yang, Z. Wang, R. Zhang, Y. Gao, P. Sun, Y. Sun and G. Lu, Sens. Actuators B Chem. 227, 419 (2016). https://doi.org/10.1016/j.snb.2015.11.051
  10. M. Arvani, H. M. Aliha, A. A. Khodadadi and Y. Mortazavi, Sci. Iran. C 24, 3033 (2017).
  11. H. Gao, L. Zhao, L. Wang, P. Sun, H. Lu, F. Liu, X. Chuai and G. Lu, Sens. Actuators B Chem. 255, 3505 (2018). https://doi.org/10.1016/j.snb.2017.09.184
  12. X. Li, Y. Chang and Y. Long, Mater. Sci. Eng. C 32, 817 (2012). https://doi.org/10.1016/j.msec.2012.01.032
  13. C. Marichy, P. A. Russo, M. Latino, J. P. Tessonnier, M. G. Willinger, N. Donato, G. Neri and N. Pinna, J. Phys. Chem. C 117, 19729 (2013).
  14. P. A. Russo, N. Donato, S. G. Leonardi, Baek, D. E Conte, G. Neri and N. Pinna, Angew. Chemie - Int. Ed. 51, 11053 (2012). https://doi.org/10.1002/anie.201204373
  15. S. A. El-Khodary, G. M. El-Enany, M. El-Okr and M. Ibrahim, Synth Met. 233, 41 (2017). https://doi.org/10.1016/j.synthmet.2017.09.002
  16. C. A. Zito, T. M. Perfecto and D. P. Volanti, Sens. Actuators B Chem. 244, 466 (2017). https://doi.org/10.1016/j.snb.2017.01.015
  17. H. Elhaes, A. Fakhry and M. Ibrahim, Materials Today: Proceedings, 3, 2483 (2016). https://doi.org/10.1016/j.matpr.2016.04.166
  18. S. S. Varghese, S. H. Varghese, S. Swaminathan, K. K. Singh and V. Mittal 4, 651 (2015). https://doi.org/10.3390/electronics4030651
  19. B. Yuliarto, G. Gumilar and N. L. W. Septiani, Adv. Mater. Sci. Eng 2015, 1 (2015).
  20. Y. Wei, G. Yi, Y. Xu, L. Zhou, X. Wang, J. Cao, G. Sun, Z. Chen, B. Hari and Z. Zhang, J. Mater. Sci. Mater. Electron 28, 17049 (2017). https://doi.org/10.1007/s10854-017-7630-y
  21. A. Yang, X. Tao, R. Wang, S. Lee and C. Surya, Appl. Phys. Lett. 91, 133110 (2007). https://doi.org/10.1063/1.2783479
  22. D. Zhang, A. Liu, H. Chang and B. Xia, RSC Adv. 5, 3016 (2015). https://doi.org/10.1039/C4RA10942B
  23. S. A. El-Khodary, G. M. El-Enany, M. El-Okr and M. Ibrahim, Electrochim. Acta 150, 269 (2014). https://doi.org/10.1016/j.electacta.2014.10.134
  24. M. Morsy, M. Helal, M. El-Okr, and M. Ibrahim, Spectrochim. Acta - Part A Mol. Biomol. Spectrosc. 132, 594 (2014). https://doi.org/10.1016/j.saa.2014.04.122
  25. X. Yu, Q. Wu, H. Zhang, G. Zeng, W. Li, Y. Qian, Y. Li, G. Yang and M. Chen, Materials (Basel) 11, 1 (2017). https://doi.org/10.3390/ma11010001
  26. S. K. Sami, J. Y. Seo, S-E. Hyeon, M. S. A. Shershah, P-J. Yoo and C. H. Chung, RSC Adv. 8, 4182 (2018). https://doi.org/10.1039/C7RA12764B
  27. H. Du, P. J. Yao, Y. Sun, J. Wang, H. Wang and N. Yu, Sens. 17, 1822 (2017). https://doi.org/10.3390/s17081822
  28. M. Morsy, M. Helal, M. El-Okr and M. Ibrahim, Der Pharma Chem. 7, 139 (2015).
  29. G. Yi, B. Xing, H. Zeng, X. Wang, C. Zhang, J. Cao and L. Chen, J. Nanomaterials 2017, 1 (2017).
  30. G. Korotcenkov, Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 139, 1 (2007). https://doi.org/10.1016/j.mseb.2007.01.044
  31. S. Xu, F. Sun, S. Yang, Z. Pan, J. Long and F. Gu, Sci. Rep. 5, 1 (2015).
  32. T. Wang, D. Huang, Z. Yang, S. Xu, G. He, X. Li, N. Hu, G. Yin, D. He and L. Zhang, Nano-Micro Lett. 8, 95 (2016). https://doi.org/10.1007/s40820-015-0073-1

Cited by

  1. Evaluating the performance of rGO/cement composites for SHM applications vol.250, pp.None, 2018, https://doi.org/10.1016/j.conbuildmat.2020.118841
  2. Growth and characterization of carbon nanotubes over CoFe2O4-MgO catalysts at different temperatures vol.28, pp.10, 2018, https://doi.org/10.1080/1536383x.2020.1767078