• 제목/요약/키워드: low temperature scanning electron microscopy

검색결과 275건 처리시간 0.026초

Microstructure and Mechanical Property in the Weld Heat-affected Zone of V-added Austenitic Fe-Mn-Al-C Low Density Steels

  • Moon, Joonoh;Park, Seong-Jun
    • Journal of Welding and Joining
    • /
    • 제33권5호
    • /
    • pp.31-34
    • /
    • 2015
  • Microstructure and tensile property in the weld heat-affected zone (HAZ) of austenitic Fe-Mn-Al-C low density steels were investigated through transmission electron microscopy analysis and tensile tests. The HAZ samples were prepared using Gleeble simulation with high heat input welding condition of 300 kJ/cm, and the HAZ peak temperature of $1200^{\circ}C$ was determined from differential scanning calorimetry (DSC) test. The strain- stress responses of base steels showed that the addition of V improved the tensile and yield strength by grain refinement and precipitation strengthening. Tensile strength and elongation decreased in the weld HAZ as compared to the base steel, due to grain growth, while V-added steel had a higher HAZ strength as compared than V-free steel.

Spatial mapping of screened electrostatic potential and superconductivity by scanning tunneling microscopy/spectroscopy

  • Hasegawa, Yukio;Ono, Masanori;Nishio, Takahiro;Eguchi, Toyoaki
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2009년도 제38회 동계학술대회 초록집
    • /
    • pp.12-12
    • /
    • 2010
  • By using scanning tunneling microscopy/spectroscopy (STM/S), we can make images of various physical properties in nanometer-scale spatial resolutions. Here, I demonstrate imaging of two electron-correlated subjects; screening and superconductivity by STM/S. The electrostatic potential around a charge is described with the Coulomb potential. When the charge is located in a metal, the potential is modified because of the free electrons in the host. The potential modification, called screening, is one of the fundamental phenomena in the condensed matter physics. Using low-temperature STM we have developed a method to measure electrostatic potential in high spatial and energy resolutions, and observed the potential around external charges screened by two-dimensional surface electronic states. Characteristic potential decay and the Friedel oscillation were clearly observed around the charges [1]. Superconductivity of nano-size materials, whose dimensions are comparable with the coherence length, is quite different from their bulk. We investigated superconductivity of ultra-thin Pb islands by directly measuring the superconducting gaps using STM. The obtained tunneling spectra exhibit a variation of zero bias conductance (ZBC) with a magnetic field, and spatial mappings of ZBC revealed the vortex formation [2]. Size dependence of the vortex formation will be discussed at the presentation.

  • PDF

Expansion behavior of low-strength steel slag mortar during high-temperature catalysis

  • Kuo, Wen-Ten;Shu, Chun-Ya
    • Computers and Concrete
    • /
    • 제16권2호
    • /
    • pp.261-274
    • /
    • 2015
  • This study established the standard recommended values and expansion fracture threshold values for the content of steel slag in controlled low-strength materials (CLSM) to ensure the appropriate use of steel slag aggregates and the prevention of abnormal expansion. The steel slags used in this study included basic oxygen furnace (BOF) slag and desulfurization slag (DS), which replaced 5-50% of natural river sand by weight in cement mixtures. The steel slag mortars were tested by high-temperature ($100^{\circ}C$) curing for 96 h and autoclave expansion. The results showed that the effects of the steel slag content varied based on the free lime (f-CaO) content. No more than 30% of the natural river sand should be replaced with steel slag to avoid fracture failure. The expansion fracture threshold value was 0.10%, above which there was a risk of potential failure. Based on the scanning electron microscopy (SEM) analysis, the high-temperature catalysis resulted in the immediate extrusion of peripheral hydration products from the calcium hydroxide crystals, leading to a local stress concentration and, eventually, deformation and cracking.

Fabrication of barium titanate-bismuth ferrite fibers using electrospinning

  • Baji, Avinash;Abtahi, Mojtaba
    • Advances in nano research
    • /
    • 제1권4호
    • /
    • pp.183-192
    • /
    • 2013
  • One-dimensional multiferroic nanostructured composites have drawn increasing interest as they show tremendous potential for multifunctional devices and applications. Herein, we report the synthesis, structural and dielectric characterization of barium titanate ($BaTiO_3$)-bismuth ferrite ($BiFeO_3$) composite fibers that were obtained using a novel sol-gel based electrospinning technique. The microstructure of the fibers was investigated using scanning electron microscopy and transmission electron microscopy. The fibers had an average diameter of 120 nm and were composed of nanoparticles. X-ray diffraction (XRD) study of the composite fibers demonstrated that the fibers are composed of perovskite cubic $BaTiO_3$-$BiFeO_3$ crystallites. The magnetic hysteresis loops of the resultant fibers demonstrated that the fibers were ferromagnetic with magnetic coercivity of 1500 Oe and saturation magnetization of 1.55 emu/g at room temperature (300 K). Additionally, the dielectric response of the composite fibers was characterized as a function of frequency. Their dielectric permittivity was found to be 140 and their dielectric loss was low in the frequency range from 1000 Hz to $10^7$ Hz.

Novel Method for the Preparation of Mesoporous BaSO4 Material with Thermal Stability by Spray Pyrolysis

  • Nagaraja, Bhari Mallanna;Abimanyu, Haznan;Jung, Kwang-Deog;Yoo, Kye-Sang
    • Bulletin of the Korean Chemical Society
    • /
    • 제29권5호
    • /
    • pp.1007-1012
    • /
    • 2008
  • Spray pyrolysis has been found as an excellent method for the preparation of mesoporous barium sulfate at higher temperature. Ethylene glycol, a reducing agent, and solvents had good inhibition effect for the preparation of $BaSO_4$ nano particles. The $BaSO_4$ solution was sprayed at 500 & 800 ${^{\circ}C}$ using different solvents such as methanol, ethanol, propanol and n-butyl alcohol. $N_2$ adsorption-desorption isotherm revealed that $BaSO_4$ is micropore free, possessing narrow mesopores size distribution and high BET surface areas of 72.52 $m^2\;g^{-1}$ at 800 ${^{\circ}C}$ using propanol as an additive. Scanning electron microscopy (SEM) indicates that the morphology of $BaSO_4$ nano material shows uniform shell like particles. Transmission electron microscopy (TEM) proved that the resulting BaSO4 nano particles were uniform in size and the average particle size was 4-8 nm. The surface functionality and ethylene glycol peaks were assessed by Fourier transform infrared resonance (FTIR) spectroscopy. Low intensity ethylene glycol specific absorption peak was observed in propanol which proved that propanol had good inhibition effect on the structural morphology of nano particles.

Glycothermal Synthesis and Characterization of 3Y-TZP Nanoparticles

  • Song, Jeong-Hwan;Lee, Ju-Hee
    • 한국재료학회지
    • /
    • 제19권8호
    • /
    • pp.412-416
    • /
    • 2009
  • In this study, 3 mol% yttria-tetragonal zirconia polycrystal (3Y-TZP) nanoparticles were synthesized by the glycothermal method under various reaction temperatures and times. The co-precipitated precursor of 3Y-TZP was prepared by adding $NH_4OH$ to starting solutions, and then the mixtures were placed in an autoclave reactor. Tetragonal yttria-doped zirconia nanoparticles were afforded through a glycothermal reaction at a temperature as low as $220^{\circ}C$, using co-precipitated gels of $ZrCl_4$ and $YCl_3{\cdot}6H_2O$ as precursors and 1,4-butanediol as the solvent. The synthesized 3Y-TZP particles were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), and Raman spectroscopy. The 3Y-TZP particles have a stable tetragonal phase only at glycothermal temperatures above $200^{\circ}C$. To investigate phase transition, the 3Y-TZP particles were heat treated from 400 to $1400^{\circ}C$ for 2 h. Raman analysis indicated that, after heat treatment, the tetragonal phase of the 3Y-TZP particles remained stable. The results of this study, therefore, suggest that 3Y-TZP powders can be prepared by the glycothermal method.

Novel Fabrication of CdS Hollow Spheres Induced by Self-assembled Process

  • Choi, Kyoung-Hoon;Chae, Weon-Sik;Jung, Jin-Seung;Kim, Yong-Rok
    • Bulletin of the Korean Chemical Society
    • /
    • 제30권5호
    • /
    • pp.1118-1120
    • /
    • 2009
  • Micro-size CdS spheres of hollow shape were fabricated through the self-assembly of high density arrow-like nanorods. The synthesis of the CdS hollow spheres were accomplished in an aqueous solution of cadmium nitrate and triblock copolymer (Pluronic P123) at low temperature (80 ${^{\circ}C}$) through the slow release of S2- ions from thioacetamide. Morphology of the fabricated CdS hollow spheres was characterized by X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), and transmission electron microscopy (TEM). The results indicate that the arrow-like CdS nanorods are simultaneously grown and attached each other to form the building units that become the spheres with hollow inside as a self-assembled process. The CdS spheres have a diameter of $2{\sim}3 {\mu}m$ and consist of the nanorods with a length of$\sim$800 nm. The nanocrystal building blocks have a hexagonal CdS structure.

F316 오스테나이트 스테인리스강의 상변태 및 입계부식저항성에 미치는 입열의 영향 (Effects of Heat Inputs on Phase Transformation and Resistance to Intergranular Corrosion of F316 Austenitic Stainless Steel)

  • 정규석;이인성;김순태
    • Corrosion Science and Technology
    • /
    • 제19권3호
    • /
    • pp.146-155
    • /
    • 2020
  • To elucidate the effect of heat inputs on phase transformation and resistance to intergranular corrosion of F316 austenitic stainless steel (ASS), thermodynamic calculations of each phase and time-temperature-transformation diagram were conducted using JMaPro simulation software, oxalic acid etch test, double-loop electrochemical potentiokinetic reactivation test (DL-EPR), field emission scanning electron microscopy with energy dispersive spectroscopy, and transmission electron microscopy analyses of Cr carbide (Cr23C6), austenite phase and ferrite phase. F316 ASS containing a relatively low C content of 0.043 wt% showed a slightly sensitized microstructure (acceptably dual structure) due to a small amount of Cr carbide precipitated at heat affected zone irrespective of heat inputs. Based on results of DL-EPR test, although heat input was increased, the ratio of Ir to Ia was only increased very slightly due to a slight sensitization. Therefore, heat inputs have little influences on resistance to intergranular corrosion of F316 austenitic stainless steel containing 0.043 wt% C.

Low Temperature Synthesis and Characterization of Sol-gel TiO2 Layers

  • Jin, Sook-Young;Reddy, A.S.;Park, Jong-Hyurk;Park, Jeong-Young
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제41회 하계 정기 학술대회 초록집
    • /
    • pp.353-353
    • /
    • 2011
  • Titanium dioxide is a suitable material for industrial use at present and in the future because titanium dioxide has efficient photoactivity, good stability and low cost [1]. Among the three phases (anatase, rutile, brookite) of titanium dioxide, the anatase form is particularly photocatalytically active under ultraviolet (UV) light. In fabrication of photocatalytic devices based on catalytic nanodiodes [2], it is challenging to obtain a photocatalytically active TiO2 thin film that can be prepared at low temperature (< 200$^{\circ}C$). Here, we present the synthesis of a titanium dioxide film using TiO2 nanoparticles and sol-gel methods. Titanium tetra-isopropoxide was used as the precursor and alcohol as the solvent. Titanium dioxide thin films were made using spin coating. The change of atomic structure was monitored after heating the thin film at 200$^{\circ}C$ and at 350$^{\circ}C$. The prepared samples have been characterized by X-ray diffraction (XRD), scanning electron microcopy, X-ray photoelectron spectroscopy, transmission electron microscopy, ultraviolet-visible spectroscopy (UV-vis), and ellipsometry. XRD spectra show an anatase phase at low temperature, 200$^{\circ}C$. UV-vis confirms the anatase phase band gap energy (3.2 eV) when using the photocatalyst. TEM images reveal crystallization of the titanium dioxide at 200$^{\circ}C$. We will discuss the switching behavior of the Pt /sol-gel TiO2 /Pt layers that can be a new type of resistive random-access memory.

  • PDF

Optical and dielectric properties of nano BaNbO3 prepared by a combustion technique

  • Vidya, S.;Mathai, K.C.;John, Annamma;Solomon, Sam;Joy, K.;Thomas, J.K.
    • Advances in materials Research
    • /
    • 제2권3호
    • /
    • pp.141-153
    • /
    • 2013
  • Nanocrystalline Barium niobate ($BaNbO_3$) has been synthesized by a novel auto-igniting combustion technique. The X-Ray diffraction studies reveals that $BaNbO_3$ posses a cubic structure with lattice constant $a=4.071{\AA}$. Phase purity and structure of the nano powder are further examined using Fourier-Transform Infrared and Raman spectroscopy. The average particle size of the as prepared nano particles from the Transmission Electron Microscopy is 20 nm. The UV-Vis absorption spectra of the samples are recorded and the calculated average optical band gap is 3.74eV. The sample is sintered at an optimized temperature of $1425^{\circ}C$ for 2h and attained nearly 98% of the theoretical density. The morphology of the sintered pellet is studied with Scanning Electron Microscopy. The dielectric constant and loss factor of a well-sintered $BaNbO_3$ at 5MHz sample is found to be 32.92 and $8.09{\times}10^{-4}$ respectively, at room temperature. The temperature coefficient of dielectric constant was $-179pp/^{\circ}C$. The high dielectric constant, low loss and negative temperature coefficient of dielectric constant makes it a potential candidate for temperature sensitive dielectric applications.