Browse > Article
http://dx.doi.org/10.3740/MRSK.2009.19.8.412

Glycothermal Synthesis and Characterization of 3Y-TZP Nanoparticles  

Song, Jeong-Hwan (Department of Information & Electronic Materials Engineering, PaiChai University)
Lee, Ju-Hee (Department of Dental Laboratory Technology, Daejeon Health Sciences College)
Publication Information
Korean Journal of Materials Research / v.19, no.8, 2009 , pp. 412-416 More about this Journal
Abstract
In this study, 3 mol% yttria-tetragonal zirconia polycrystal (3Y-TZP) nanoparticles were synthesized by the glycothermal method under various reaction temperatures and times. The co-precipitated precursor of 3Y-TZP was prepared by adding $NH_4OH$ to starting solutions, and then the mixtures were placed in an autoclave reactor. Tetragonal yttria-doped zirconia nanoparticles were afforded through a glycothermal reaction at a temperature as low as $220^{\circ}C$, using co-precipitated gels of $ZrCl_4$ and $YCl_3{\cdot}6H_2O$ as precursors and 1,4-butanediol as the solvent. The synthesized 3Y-TZP particles were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), and Raman spectroscopy. The 3Y-TZP particles have a stable tetragonal phase only at glycothermal temperatures above $200^{\circ}C$. To investigate phase transition, the 3Y-TZP particles were heat treated from 400 to $1400^{\circ}C$ for 2 h. Raman analysis indicated that, after heat treatment, the tetragonal phase of the 3Y-TZP particles remained stable. The results of this study, therefore, suggest that 3Y-TZP powders can be prepared by the glycothermal method.
Keywords
3Y-TZP; nanoparticle; glycothermal; 1,4-butanediol; Raman;
Citations & Related Records

Times Cited By SCOPUS : 2
연도 인용수 순위
1 R. C. Garvie, R. H. Hannink and R. T. Pascoe, Nature, 258, 703 (1975)   DOI
2 R. C. Garvie, J. Phys. Chem., 82, 218 (1978)   DOI
3 D. J. Green, R. H. Hannink and M. V. Swain, Transformation toughening of ceramics. Boca Raton, Fl: CRC (1989)
4 T. G. Nieh and J. Wadsworth, Acta Mater., 38, 1121 (1990)   DOI   ScienceOn
5 A. L. Quinelato, E. Longo, L. A. Perazolli and J. A. Varela, J. Eur. Ceram. Soc., 20, 1077 (2000)   DOI   ScienceOn
6 G. Dell'Agli and G. Mascolo, J. Eur. Ceram. Soc., 20, 139 (2000)   DOI   ScienceOn
7 M. Inoue, H. Tanino, Y. Kondo and T. Inui, J. Am. Ceram. Soc., 72 (2), 352 (1989)   DOI   ScienceOn
8 C. Chang and S. Jon, CIMTEC 2002 Proc., 4, 761 (2002)
9 Y. Gogotsi and V. Domnich, in High-Pressure Surface Science and Engineering (Materials Science and Engineering), (CRC Press, Taylor & Francis, 2003) p. 467-520
10 P. Holtappels and C. Bagger, J. Eur. Ceram. Soc., 22(1), 41 (2002)   DOI   ScienceOn
11 J. Cai, C. Raptis, Y. S. Raptis and E. Anastassaki, Phys. Rev. B, 51, 201 (1995)   DOI   ScienceOn
12 C. Piconi and G. Maccauro, Biomaterials, 20, 1 (1999)   DOI   ScienceOn
13 D. Segal, Key Eng. Mater., 153, 241 (1998)   DOI
14 I. Zhitomirsky and A. Petric, J. Eur. Ceram. Soc., 20(12), 2055 (2000)   DOI   ScienceOn
15 J. Livage, F. Beteille, C. Rouse, M. Chatry and P. Davidson, Acta Mater., 46, 743 (1998)   DOI   ScienceOn
16 M. Inoue, J. Phys.: Condens. Matter, 16, S1291-S1303 (2004)   DOI   ScienceOn
17 Y. J. Jung, D. Y. Lim, J. S. Nho, S. B. Cho, R. E. Riman and B. W. Lee, J. Crystal Growth, 274, 638 (2005)   DOI   ScienceOn
18 E.C. Subbara, Science and Technology of Zirconia, Adv. in Ceramics vol.3, p.1-24, eds., A. H. Heuer, L. W. Hobbs (The American Ceramic Society, Columbus, Ohio, 1981)
19 R. E. Juarez, D. G. Lamas, G. E. Lascalea and N. E. Walsoe de Reca, J. Eur. Ceram. Soc., 20, 133 (2000)   DOI   ScienceOn