Browse > Article
http://dx.doi.org/10.14773/cst.2020.19.3.146

Effects of Heat Inputs on Phase Transformation and Resistance to Intergranular Corrosion of F316 Austenitic Stainless Steel  

Jeong, Gyue-Seog (Mechanical & Plant Design Engineering Department, KEPCO Engineering & Construction Company)
Lee, In-Sung (Research Institute of Iron and Steel, Engineering Research Park, Yonsei University)
Kim, Soon-Tae (Research Institute of Iron and Steel, Engineering Research Park, Yonsei University)
Publication Information
Corrosion Science and Technology / v.19, no.3, 2020 , pp. 146-155 More about this Journal
Abstract
To elucidate the effect of heat inputs on phase transformation and resistance to intergranular corrosion of F316 austenitic stainless steel (ASS), thermodynamic calculations of each phase and time-temperature-transformation diagram were conducted using JMaPro simulation software, oxalic acid etch test, double-loop electrochemical potentiokinetic reactivation test (DL-EPR), field emission scanning electron microscopy with energy dispersive spectroscopy, and transmission electron microscopy analyses of Cr carbide (Cr23C6), austenite phase and ferrite phase. F316 ASS containing a relatively low C content of 0.043 wt% showed a slightly sensitized microstructure (acceptably dual structure) due to a small amount of Cr carbide precipitated at heat affected zone irrespective of heat inputs. Based on results of DL-EPR test, although heat input was increased, the ratio of Ir to Ia was only increased very slightly due to a slight sensitization. Therefore, heat inputs have little influences on resistance to intergranular corrosion of F316 austenitic stainless steel containing 0.043 wt% C.
Keywords
Stainless steel; DL-EPR; Heat input; ${\delta}-ferrite$; Cr-carbide;
Citations & Related Records
연도 인용수 순위
  • Reference
1 V. Moura, A. Y. Kina, S. S. M. Tavares, L. D. Lima, and F. B. Mainier, J. Mater. Sci., 43, 536 (2008). https://doi.org/10.1007/s10853-007-1785-5   DOI
2 S. Yang, Z. J. Wang, H. Kokawa, and Y. S. Sato, J. Mater. Sci., 42, 847 (2007). https://doi.org/10.1007/s10853-006-0063-2   DOI
3 S. M. Bruemmer, B. W. Arey, and L. A. Charlot, Corrosion, 48, 42 (1992). https://doi.org/10.5006/1.3315917   DOI
4 M. H. Lewis and B. Hattersley, Acta Metall., 13, 1159 (1965). https://doi.org/10.1016/0001-6160(65)90053-2   DOI
5 R. Singh, S. G. Chowdhury, B. R. Kumar, S. K. Das, P. K. De, and I. Chattoraj, Scripta Mater., 57, 185 (2007). https://doi.org/10.1016/j.scriptamat.2007.04.017   DOI
6 G. H. Aydogdu and M. K. Aydinol, Corros. Sci., 48, 3565 (2006). https://doi.org/10.1016/j.corsci.2006.01.003   DOI
7 D. N. Wasnik, V. Kain, I. Samajdar, B. Verlinden, and P. K. De, Acta Mater., 50, 4587 (2002). https://doi.org/10.1016/S1359-6454(02)00306-3   DOI
8 Y. Ustinovshikov, A. Ruts, O. Bannykh, V. Blinov, and M. Kostina, Mater. Sci. Eng. A, 262, 82 (1999). https://doi.org/10.1016/S0921-5093(98)01015-6   DOI
9 F. R. Beckitt and B. R. Clark, Acta Metall., 15, 113 (1967). https://doi.org/10.1016/0001-6160(67)90159-9   DOI
10 L. K. Singhal and J. W. Martin, Acta Metall., 15, 1603 (1967). https://doi.org/10.1016/0001-6160(67)90134-4   DOI
11 P. R. Howell, J. V. Bee, and R. W. K. Honeycombe, Metall. Trans. A, 10, 1213 (1979). https://doi.org/10.1007/BF02811976   DOI
12 R. A. Ricks, P. R. Howell, and R. W. K. Honeycombe, Metall. Trans. A, 10, 1049 (1979). https://doi.org/10.1007/BF02811651   DOI
13 T. Thorvaldsson and G. L. Dunlop, J. Mater. Sci., 18, 793 (1983). https://doi.org/10.1007/BF00745578   DOI
14 G. S. Was and R. M. Kruger, Acta Metall., 33, 841 (1985). https://doi.org/10.1016/0001-6160(85)90108-7   DOI
15 E.-J. Oh, J.-H. Lee, S.-W. Cho, W.-G. Yi, and K.-W. Nam, JWJ, 37, 322 (2019). https://doi.org/10.5781/JWJ.2019.37.4.6
16 ASTM A262, Practice A, Standard Practices for Detecting Susceptibility to Intergranular Attack in Austenitic Stainless Steels-Oxalic Acid Etch Test for Classification of Etch Structures of Austenitic Stainless Steels (2001).
17 ISO 12732, Corrosion of Metals and Alloys-Electrochemical Potentiokinetic Reactivation Measurement using the Double Loop Method (Based on Cihal's Method) (2006).
18 B. H. Jung and M. G. Kim, Journal of the Korean Society of Marine Engineering, 30, 709 (2006). http://www.koreascience.or.kr/article/JAKO200604623495510.page
19 H. U. Hong, B. S. Rho, and S. W. Nam, Mater. Sci. Eng., A, 318, 285 (2001). https://doi.org/10.1016/S0921-5093(01)01254-0   DOI