• Title/Summary/Keyword: low temperature irradiation

Search Result 275, Processing Time 0.037 seconds

Improved Biosurfactant Production by Bacillus subtilis SPB1 Mutant Obtained by Random Mutagenesis and Its Application in Enhanced Oil Recovery in a Sand System

  • Bouassida, Mouna;Ghazala, Imen;Ellouze-Chaabouni, Semia;Ghribi, Dhouha
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.1
    • /
    • pp.95-104
    • /
    • 2018
  • Biosurfactants or microbial surfactants are surface-active biomolecules that are produced by a variety of microorganisms. Biodegradability and low toxicity have led to the intensification of scientific studies on a wide range of industrial applications for biosurfactants in the field of environmental bioremediation as well as the petroleum industry and enhanced oil recovery. However, the major issues in biosurfactant production are high production cost and low yield. Improving the bioindustrial production processes relies on many strategies, such as the use of cheap raw materials, the optimization of medium-culture conditions, and selecting hyperproducing strains. The present work aims to obtain a mutant with higher biosurfactant production through applying mutagenesis on Bacillus subtilis SPB1 using a combination of UV irradiation and nitrous acid treatment. Following mutagenesis and screening on blood agar and subsequent formation of halos, the mutated strains were examined for emulsifying activity of their culture broth. A mutant designated B. subtilis M2 was selected as it produced biosurfactant at twice higher concentration than the parent strain. The potential of this biosurfactant for industrial uses was shown by studying its stability to environmental stresses such as pH and temperature and its applicability in the oil recovery process. It was practically stable at high temperature and at a wide range of pH, and it recovered above 90% of motor oil adsorbed to a sand sample.

Effects of Surface Defect Distribution of $SiO_x(x{\le}2)$ Plates on Chemical Quenching ($SiO_x(x{\le}2)$ 플레이트의 표면 결함 분포가 화학 소염에 미치는 영향)

  • Kim, Kyu-Tae;Kwon, Se-Jin
    • 한국연소학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.328-336
    • /
    • 2005
  • Effects of surface defect distribution on flame instability during flame-surface interaction are experimentally investigated. To examine the chemical quenching phenomenon, we prepared thermally grown silicon oxide plates with well-defined defect density. Ion implantation was used to control the number of defects, i.e. oxygen vacancies. In an attempt to preferentially remove the oxygen atoms from silicon dioxide surface, argon ions with low energy level from 3keV to 5keV were irradiated at the incident angle of $60^{\circ}C$. Compositional and structural modification of $SiO_2$ induced by low-energy $Ar^+$ ion irradiation has been characterized by Atomic Force Microscopy (AFM) and X-ray Photoelectron Spectroscopy (XPS). The analysis shows that as the ion energy increases, the number of structural defect also increases and non-stoichiometric condition of $SiO_x(x{\le}2)$ plates is enhanced. From the quenching distance measurements, we found out that when the surface temperature is under $300^{\circ}C$, the quenching distance decreases on account of reduced heat loss; as the surface temperature increases over $300^{\circ}C$, however, quenching distance increases despite reduced heat loss effect. Such aberrant behavior is caused by heterogeneous chemical reaction between active radicals and surface defect sites. The higher defect density, the larger quenching distance. This results means that chemical quenching is governed by radical adsorption and can be parameterized by the oxygen vacancy density on the surface.

  • PDF

Performance enhancement of Amorphous In-Ga-Zn-O junctionless TFT at Low temperature using Microwave Irradiation

  • Kim, Tae-Wan;Choe, Dong-Yeong;Jo, Won-Ju
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.208.2-208.2
    • /
    • 2015
  • 최근 산화물 반도체에 대한 연구가 활발하게 이루어지고 있다. 비정질 산화물 반도체인 In-Ga-Zn-O(IGZO)는 기존의 비정질 실리콘에 비해 공정 단가가 낮으며 넓은 밴드 갭으로 인한 투명성을 가지고 있고, 저온 공정이 가능하여 다양한 기판에 적용이 가능하다. 반도체의 공정 과정에서 열처리는 소자의 특성 개선을 위해 필요하다. 일반적인 열처리 방법으로 furnace 열처리 방식이 주로 이용된다. 그러나 furnace 열처리는 시간이 오래 걸리며 일반적으로 고온에서 이루어지기 때문에 최근 연구되고 있는 유리나 플라스틱, 종이 기판을 이용한 소자의 경우 기판이 손상을 받는 단점이 있다. 이러한 단점들을 극복하기 위하여 저온 공정인 마이크로웨이브를 이용한 열처리 방식이 제안되었다. 마이크로웨이브 열처리 기술은 소자에 에너지를 직접적으로 전달하기 때문에 기존의 다른 열처리 방식들과 비교하여 에너지 전달 효율이 높다. 또한 짧은 공정 시간으로 공정 단가를 절감하고 대량생산이 가능한 장점을 가지고 있으며, 저온의 열처리로 기판의 손상이 없기 때문에 기판의 종류에 국한되지 않은 공정이 가능할 수 있을 것으로 기대된다. 따라서 본 연구에서는 마이크로웨이브 열처리가 소자의 전기적 특성 개선에 미치는 영향을 확인하였다. 제작된 IGZO 박막 트렌지스터는 p-type bulk silicon 위에 thermal SiO2 산화막이 100 nm 형성된 기판을 사용하였다. RCA 클리닝을 진행한 후 RF sputter를 사용하여 In-Ga-Zn-O (1:1:1) 을 70 nm 증착하였다. 이후에 Photo-lithography 공정을 통하여 active 영역을 형성하였고, 전기적 특성 평가가 용이한 junctionless 트랜지스터 구조로 제작하였다. 후속 열처리 방식으로 마이크로웨이브 열처리를 1000 W에서 2분간 실시하였다. 그리고 기존 열처리 방식과의 비교를 위해 furnace를 이용하여 N2 가스 분위기에서 $600^{\circ}C$의 온도로 30분 동안 열처리를 실시하였다. 그 결과, 마이크로웨이브 열처리를 한 소자의 경우 기존의 furnace 열처리 소자와 비교하여 우수한 전기적 특성을 나타내는 것을 확인하였다. 따라서 마이크로웨이브를 이용한 열처리 공정은 향후 저온 공정을 요구하는 소자 공정에 활용될 수 있을 것으로 기대된다.

  • PDF

Liquid Crystal Aligning Capabilities Treated on Organic Overcoat Thin Films by Ion Beam Irradiation Method

  • Han, Jeong-Min;Kim, Byoung-Yong;Kim, Jong-Yeon;Kim, Young-Hwan;Han, Jin-Woo;Hwang, Jeoung-Yeon;Lee, Sang-Keuk;Kang, Dong-Hun;Ok, Chul-Ho;Seo, Dae-Shik
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.3
    • /
    • pp.245-249
    • /
    • 2007
  • The liquid crystal display (LCD) applications treated on the organic overcoat thin film surfaces by ion beam irradiation was successfully studied. The good LC aligning capabilities treated on the organic overcoat thin film surfaces with ion beam exposure of $60^{\circ}$ for 2 min above ion beam energy of 1200 eV can be achieved. But, the alignment of defect of NLC on the organic overcoat surface at low energy of 600 eV was measured. The pretilt angle of NLC on the organic overcoat thin film surface with ion beam exposure of $60^{\circ}$ for 2 min at energy of 1800 eV was measured about 1 degree. Finally, the good thermal stability of LC alignment on the organic overcoat thin film surface with ion beam exposure of $60^{\circ}$ for 2 min until annealing temperature of $200^{\circ}C$ can be measured.

Kinetics on the Microwave Carbonization of Rice Chaff (왕겨의 마이크로파 탄화속도)

  • Kim, Ji Hyun;Ryu, Seung Kon;Kim, Dong Kook
    • Korean Chemical Engineering Research
    • /
    • v.43 no.6
    • /
    • pp.683-690
    • /
    • 2005
  • The microwave carbonization of rice chaff was performed, and their kinetics were compared to those of conventional thermal carbonization. Thermal carbonization was carried out at $300-600^{\circ}C$ for 30 minutes. The weight loss and C/H mole ratio remarkably increased as increase of temperature, while there was no carbonization by microwave dielectric heating in spite of increasing incident power and irradiation time. However, microwave carbonization was successfully performed by addition of 6 wt% of thermal carbonized rice chaff, it's C/H mole ratio is larger than 3.0, as a catalytic initiator to uncarbonized rice chaff, and the kinetics was depended on the incident power and irradiation time, resulting in the coincide with thermal carbonization to the Arrhenius equation. The activation energy of microwave carbonization was quite low as compared to that of thermal carbonization, while the kinetic constant was large. This is due to the internal volumetric heating characteristics of carbonized rice chaff by microwave. The effect of ash, and C/H mole ratio and amount of carbonized rice chaff were investigated on microwave carbonization.

Synthesis of Monodisperse Magnetite Nanocrystallites Using Sonochemical Method (음향화학법을 이용한 균일한 나노 자성체의 합성)

  • Cho, Jun-Hee;Ko, Sang-Gil;Ahn, Yang-Kyu;Song, Ki-Chang;Choi, Eun-Jung
    • Journal of the Korean Magnetics Society
    • /
    • v.16 no.3
    • /
    • pp.163-167
    • /
    • 2006
  • Ultrasonic irradiation in a solution during the chemical reaction may accelerate the rate of the reaction and the crystallization at low temperature. We have synthesized nanometer sized magnetite particles using coprecipitation method, sonochemical method without surfactant, and sonochemical method with surfactant, in order to investigate the effect of ultrasonic irradiation and surfactant on the coprecipitates of metal ions. The size of the magnetite nanoparticles prepared by coprecipitation method, and sonochemical method without surfactant showed broad distributions. But we got uniform nanoparticles using a sonochemical method with oleic acid. The average size of the particles can be controlled by the ratio $R=[H_2O]/[surfactant]$. The size of the magnetite nanoparticles prepared by this method showed narrow distributions. We have characterized the nanoparticles using an X-ray diffraction (XRD), a superconducting quantum interference device (SQUID), and atomic force microscope (AFM). The size and distribution of the magnetite nanoparticles were measured by dynamic light scattering (DLS) method.

Low Temperature Sintering Process of Sol-gel Derived Ferroelectric Sr0.9Bi2.1Ta1.8Nb0.2O9 Thin films (Sol-gel 법으로 제조된 강유전체 Sr0.9Bi2.1Ta1.8Nb0.2O9 박막의 저온결정화 공정)

  • 김영준;김병호
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.3
    • /
    • pp.279-285
    • /
    • 2003
  • Ferroelectric S $r_{0.9}$B $i_{2.1}$T $a_{1.8}$N $b_{0.2}$ thin films with 200 nm thicknesses were deposited on Pt/Ti $O_2$/ $SiO_2$/Si Substrates by a sol-gel method. In these experiments, Sr(O $C_2$ $H_{5}$)$_2$, Bi(TMHD)$_3$, Ta(O $C_2$ $H_{5}$)$_{5}$ and Nb(O $C_2$ $H_{5}$)$_{5}$ were used as precursors, which were dissolved in 2-methoxyethanol. After UV-irradiation and RTA processes, the remanent polarization value (2 $P_{r}$) of SBTN thin films with annealed at $650^{\circ}C$ was 8.49 and 11.94 $\mu$C/$\textrm{cm}^2$ at 3 V and 5 V, respectively.

Heavy Metals Extraction from Contaminated Soils using Aqua Regia Extraction (왕수를 이용한 중금속 오염토양에서의 추출방안 연구)

  • Lee, Dukyoung;Jung, Sunkook;Son, Younggyu
    • Journal of Soil and Groundwater Environment
    • /
    • v.23 no.2
    • /
    • pp.15-22
    • /
    • 2018
  • Aqua regia extraction for the quantification of heavy metals and As in contaminated soils was investigated as one of preliminary steps for on-site monitoring using sensor technology. Soil samples were taken from closed railway depot, closed mines, and closed refinery and various extraction conditions including $30^{\circ}C/15min$, $30^{\circ}C/30min$, $30^{\circ}C/60min$, $30^{\circ}C/120min$, $80^{\circ}C/15min$, $80^{\circ}C/30min$, $80^{\circ}C/60min$, $80^{\circ}C/120min$ were tested. The optimal extraction condition was determined as $80^{\circ}C/60min$ because the extraction efficiencies of Zn were relatively low and did not reach the targeted level (80-100% of original concentrations) for $30^{\circ}C$ conditions. It was found that the fractionation of heavy metals and As using the sequential extraction method was useful to understand the degree of metal extraction. In order to enhance the extraction efficiency within short extraction time, ultrasound technology using a 20 kHz horn-type sonicator was additionally used for $30^{\circ}C/15min$. It was revealed that ultrasound could significantly enhance the extraction efficiency and pulsed irradiation showed higher efficiency than continuous irradiation due to the less formation of bubble clouds. However high temperature condition ($80^{\circ}C$) was required to achieve high extraction efficiency for Zn in spite of the use of ultrasound.

Production of Lard Based Biodiesel Using Ultrasound Assisted Trans-Esterification (초음파가 도입된 전이에스테르화 반응을 이용한 돈지원료 바이오디젤의 제조)

  • Cho, Hae-Jin;Lee, Seung-Bum;Lee, Jae-Dong
    • Applied Chemistry for Engineering
    • /
    • v.22 no.2
    • /
    • pp.155-160
    • /
    • 2011
  • An animal fat is an attractive biodiesel energy source for its high stability against oxidation and low incomplete combustion ratio due to the high heating value and cetane value. However, it requires a refinery process because of the high content of saturated acid and impurity which increas the boiling point. In this study, the optimum biodiesel synthetic process of lard is suggested. Indeed, we demonstrate new biodiesel production processes to alter conventional process of heating and mixing by applying ultrasonic energy. While the optimum reaction temperature and mole ratio of methanol and lard, when using conventional mixing and heating process, were $55^{\circ}C$ and 12, respectively, the reaction time were reduced to 30 minutes by applying ultrasonic irradiation power of 500 W. The new process applying ultrasonic irradiation yielded synthetic biodiesel properties as followings: 3.34 cP of the viscosity, 37.0 MJ/kg of the caloric value and below 0.25 mgKOH/g of the acidic value, which satisfy biodiesel quality criteria.

Hydrogen sensor using Pt-loaded porous In2O3 nanoparticle structures (백금 담지 다공성 산화인듐 나노입자 구조를 이용한 수소센서)

  • Sung Do Yun;Yoon Myung;Chan Woong Na
    • Journal of the Korean institute of surface engineering
    • /
    • v.56 no.6
    • /
    • pp.420-426
    • /
    • 2023
  • We prepared a highly sensitive hydrogen (H2) sensor based on Indium oxides (In2O3) porous nanoparticles (NPs) loaded with Platinum (Pt) nanoparticle in the range of 1.6~5.7 at.%. In2O3 NPs were fabricated by microwave irradiation method, and decorations of Pt nanoparticles were performed by electroless plating on In2O3 NPs. Crystal structures, morphologies, and chemical information on Pt-loaded In2O3 NPs were characterized by grazing-incident X-ray diffraction, field-emission scanning electron microscopy, energy-dispersive X-ray spectroscopy, respectively. The effect of the Pt nanoparticles on the H2-sensing performance of In2O3 NPs was investigated over a low concentration range of 5 ppm of H2 at 150-300 ℃ working temperatures. The results showed that the H2 response greatly increased with decreasing sensing temperature. The H2 response of Pt loaded porous In2O3 NPs is higher than that of pristine In2O3 NPs. H2 gas selectivity and high sensitivity was explained by the extension of the electron depletion layer and catalytic effect. Pt loaded porous In2O3 NPs sensor can be a robust manner for achieving enhanced gas selectivity and sensitivity for the detection of H2.