Browse > Article
http://dx.doi.org/10.14478/ace.2011.22.2.155

Production of Lard Based Biodiesel Using Ultrasound Assisted Trans-Esterification  

Cho, Hae-Jin (Division of Energy & Biological Engineering, Kyungwon University)
Lee, Seung-Bum (Division of Energy & Biological Engineering, Kyungwon University)
Lee, Jae-Dong (Division of Energy & Biological Engineering, Kyungwon University)
Publication Information
Applied Chemistry for Engineering / v.22, no.2, 2011 , pp. 155-160 More about this Journal
Abstract
An animal fat is an attractive biodiesel energy source for its high stability against oxidation and low incomplete combustion ratio due to the high heating value and cetane value. However, it requires a refinery process because of the high content of saturated acid and impurity which increas the boiling point. In this study, the optimum biodiesel synthetic process of lard is suggested. Indeed, we demonstrate new biodiesel production processes to alter conventional process of heating and mixing by applying ultrasonic energy. While the optimum reaction temperature and mole ratio of methanol and lard, when using conventional mixing and heating process, were $55^{\circ}C$ and 12, respectively, the reaction time were reduced to 30 minutes by applying ultrasonic irradiation power of 500 W. The new process applying ultrasonic irradiation yielded synthetic biodiesel properties as followings: 3.34 cP of the viscosity, 37.0 MJ/kg of the caloric value and below 0.25 mgKOH/g of the acidic value, which satisfy biodiesel quality criteria.
Keywords
ultrasonic energy; trans-esterification; biodiesel; lard; fatty acid methyl ester content;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
Times Cited By SCOPUS : 0
연도 인용수 순위
1 S.-J. Park and E.-Y. Kim, Korean J. Biotechnol. Bioeng, 17, 396 (2002).
2 C.-K. Kim and H.-G. Kim, The Korean Society of Tribologists & Lubrication Engineers, 24, 1 (2008).
3 C. T. Hou and J. F. Shaw, Biocatalysis and Bioenergy, John Wiley & Sons, Inc, 59 (2009).
4 S. Lebedevas and A. Waicekauskas, Energy Fuels, 20, 2274 (2006).   DOI   ScienceOn
5 M. E, Cunha, L. C. Krause, M. S. A. Moraes, C. S. Faccini, R. A. Jacques, S. R. Almeida, M. R. A. Rodrigues, and E. B. Caramao, Fuel Process. Technol., 90, 570 (2009).   DOI   ScienceOn
6 M. Guru, B. D. Artukoglu, A. Keskin, and A. Koca, Energy Convers. Manage., 50, 498 (2009).   DOI   ScienceOn
7 G. M. Tashtoush, M. I. Al-Widyan, and M. M. Al-Jarrah, Energy Convers. Manage., 45, 2697 (2004).   DOI   ScienceOn
8 P. R. Munjyappa, S. C. Brammer, and H. Noureddini, Bioresour. Technol., 56, 19 (1996).   DOI   ScienceOn
9 G.-T. Jeong, H.-S. Yang, and D.-H. Park, Bioresource Technology, 100, 25 (2009).   DOI   ScienceOn
10 H.-J. Kim, W.-I. Kim, S.-B. Lee, and I.-K. Hong, J. Korean Ind. Eng. Chem, 8, 886 (1997).
11 S.-B. Lee, S.-M. Lee, and I.-K. Hong, J. Korean Ind. Eng. Chem, 14, 989 (2003).
12 T. J. Mason and J. P. Lorimer, Sonochemistry, John Wily & Sons, New York (1988).
13 T. J. Mason, Chemistry with Ultrasound, Elsevier Science, New York (1990).
14 G.-T. Jung and D.-H. Yoon, KSSB, Proceedings of Current Biotechnology and Bioengineering (XII), 167 (2003).
15 S.-B. Lee, K.-H. Han, J.-D. Lee, and I.-K. Hong, J. Ind. Eng. Chem., 16, 1006 (2010).