• Title/Summary/Keyword: low temperature co-fired ceramics (LTCC)

Search Result 66, Processing Time 0.038 seconds

Low-Temperature Sintering and Dielectric Properties of BaSn(BO3)2 Ceramics (BaSn(BO3)2세라믹스의 저온소결 및 유전특성)

  • Nam, Myung-Hwa;Kim, Hyo-Tae;Hwang, June-Cheol;Nam, Joong-Hee;Yeo, Dong-Hoon;Kim, Jong-Hee;Nahm, Sahn
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.2 s.285
    • /
    • pp.92-97
    • /
    • 2006
  • Dolomite type $BaSn(BO_3)_2$ ceramics with rhombohedral crystal structure has been synthesized via solid state reaction route. Dielectric properties were measured for the samples sintered at $1050\~1200^{\circ}C$ for 2 h in air. Dielectric constant, loss tangent, and temperature coefficient were increased with sintering temperature due to the evolution of $BaSnO_3$, secondary, phase. Optimum dielectric properties were obtained at the $BaSn(BO_3)_2$ ceramics sintered at $1100^{\circ}C.\;CuO/Bi_2O_3$ was added to $BaSn(BO_3)_2$ ceramics to lower the sintering temperature for LTCC application, then Co and Fe-based coloring agents were added for colorizing the LTCC tape. Typical dielectric properties of $BaSn(BO_3)_2$ ceramics with $5 wt\%\;CuO/Bi_2O_3\;and\;3wt\%$ Co-coloring agent that sintered at $900^{\circ}C$ were $\varepsilon_r=9.89,\;tan{\delta}=0.92\times10^{-3},\;and\;TCC=112ppm/^{\circ}C$. Thus obtained LTCC tape was co-fired with Ag paste for compatibility test and revealed no sign of Ag reaction with the ceramics.

An LTCC Inductor Embedding NiZn Ferrite and Its Application (NiZn 페라이트를 내장한 LTCC 인덕터 및 응용)

  • Won, Yu-June;Kim, Hee-Jun
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.55 no.10
    • /
    • pp.534-539
    • /
    • 2006
  • An integrated inductor using the low-temperature co-fired ceramics(LTCC) technology for low-power electronics was fabricated. In the inductor NiZn ferrite sheet$({\mu}_r=230)$, was embedded to increase inductance. The inductor has Ag spiral coil with 14 turns$(7turns{\times}2layers)$, a dimension of 0.6mm in width, 10um in thickness, and 0.15mm pitch. To evaluate the inductance, including the parasitic resistance, the fabricated inductor was calculated and measured. It was confirmed that calculated values were very close to the measured values. Finally as an application of the LTCC integrated inductor to low power electronic circuits, a LTCC boost DC/DC converter with 1W output power and up to 0.5MHz switching frequency using the inductor fabricated was developed.

Characteristics of Embedded R, L, C Fabricated by Using LTCC-M Technology and Development of a PAM for LMR thereby (LTCC-M 기술을 이용한 내부실장 R, L, C 수동소자의 특징 및 LMR용 PAM개발)

  • 김인태;박성대;강현규;공선식;박윤휘;문제도
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.7 no.1
    • /
    • pp.13-18
    • /
    • 2000
  • Low temperature co-fired ceramics on metal (LTCC-M) is efficient for embedding passive components with good tolerance in a module due to the dimensional stability in x and y directions by the constraint of metal core during the firing. In addition, the radiation noise can be reduced by metal core. In this paper, embedded passive components were introduced and a power amplifier module (PAM) fabricated by using the passive components was explained. The embedded passive components in test patters showed the tolerance of 10~20% and the good repeatability in tolerance of embedded passives was maintained in module fabrication. The shortened traces in multi chip modules (MCMs) make the signal delay time decreased and the embedded passives simplify the packaging processes owing to the less solder points, which enhance the electrical performance and increase the reliability of the modules. The LTCC-M technology is one of the promising candidates for RF application and is expected to expand its applications to power and high performance devices.

  • PDF

An LTCC Inductor Embedding NiZn Ferrite and Its Application (NiZn 페라이트를 내장한 LTCC 인덕터 개발 및 응용)

  • Won, Yu-June;Kim, Hee-Jun
    • Proceedings of the KIEE Conference
    • /
    • 2006.07b
    • /
    • pp.939-940
    • /
    • 2006
  • An integrated inductor using the low-temperature co-fired ceramics(LTCC ) technology for low-power electronics was fabricated. In the inductor NiZn ferrite sheet(${\mu}_r=230$), was embedded to increase inductance. The inductor has Ag spiral coil with 14 turns($7turns{\times}2layers$), a dimension of 0.6mm in width, 10um in thickness, and 0.15mm pitch. To evaluate the inductance, including the parasitic resistance, the fabricated inductor was calculated and measured. It was confirmed that calculated values were very close to the measured values. Finally as an application of the LTCC integrated inductor to low power electronic circuits, a LTCC buck DC/DC converter with 1W output power and up to 0.5MHz switching frequency using the inductor fabricated was develop.

  • PDF

The Microwave Dielectric Properties on Glass Frit Addition of Low Temperature Co-fired Ceramic (Glass Frit 첨가에 따른 LTCC용 마이크로파 유전체의 유전 특성)

  • Yoon, Jung-Rag;Lee, Serk-Won;Lee, Heon-Young;Kim, Jee-Gyun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07b
    • /
    • pp.611-615
    • /
    • 2003
  • The crystalline and dielectric properties on $Al_2O_3$ filled glass frit ($CaO-Al_2O_3-SiO_2-MgO-B_2O_3$) with admixtures of $TiO_2$ have been investigated. The dielectric constant value of $7.5{\sim}7.8$, quality factor value of 700 were obtained for glass frit : $Al_2O_3$ (50 : 50 wt%) ceramics. As the amount of $TiO_2$ increased, temperature coefficient of dielectric constant were decreased.

  • PDF

Characterization of Embedded Thick Film Capacitor in LTCC Substrate (유전체 Paste를 이용한 LTCC 내장형 후막 Capacitor 제작 및 평가)

  • Cho, Hyun-Min;Yoo, Myung-Jae;Park, Sung-Dae;Lee, Woo-Sung;Kang, Nam-Kee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07b
    • /
    • pp.760-763
    • /
    • 2003
  • Low Temperature Cofired Ceramics (LTCC) technology is a promising technology to integrate many devices in a module by embedding passive components. For the module substrate, most LTCC structures have dielectric constants below 10 to reduce signal delay time. Some components, which need high dielectric constants, have not been yet embedded in LTCC module. So, embedding capacitor with high capacitance by applying another dielectrics with high dielectric constants in LTCC is an important issue to maximize circuit density in LTCC module. In this study, electrical properties of embedded capacitor fabricated by dielectric paste of high dielectric constants (K-100) and co-firing behavior with LTCC were investigated. To prevent camber development of co-fired structure, constrained sintering process was tested. Dielectric properties of embedded capacitors were calculated from their capacitance and impedance value. Temperature coefficient of capacitance were also measured.

  • PDF

Study on properties of CaO-MgO-$SiO_2$ system glass-ceramic for LTCC (CaO-MgO-$SiO_2$ 계 LTCC glass에 대한 특성 연구)

  • Chang, Myung-Whun;Ma, Won-Chul
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.322-322
    • /
    • 2008
  • Low-temperature co-fired ceramics (LTCC) have turned out to be very promising technology in accordance with the rapid developments in semiconductor technology. The demands for compact electrical assemblies, smaller power loss as well as high signal density can be fulfilled by LTCC. And for the multi-layered ceramic devices with embedded passive components such as high dielectric constant decoupling capacitor, LTCC materials require the several conditions to avoid delamination and internal cracks. For the present study, diopside-based glass is chosen as the LTCC substrate material in view of its high coefficient of thermal expansion (CTE). From the experimental resultsn the influence of each element on the CTE change can be revealed.

  • PDF

Soldering characteristics of Ag-Pd electrodes in relationship to differing particle size of LTCC substrate (LTCC 기판의 Particle Size 에 따른 Ag-Pd 전극의 Soldering 특성 변화)

  • 조현민;유명재;박종철
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2002.05a
    • /
    • pp.130-133
    • /
    • 2002
  • Solder leaching resistance of the metal electrode is an important factor with regard to adhesion properties of ceramic substrate. In the Low Temperature Co-fired Ceramics (LTCC), Ag-Pd or Ag-Pt pastes are used instead of pure Ag paste to prevent leaching. Solder leaching behavior of the Ag-Pd paste in relation to LTCC raw material powder size was investigated. First fabrication of LTCC green tape with different particle size was done. LTCC substrates with Ag-Pd electrode were prepared using conventional multilayer ceramic process. Dipping test was performed to test solder leaching behavior of the electrode. Ag-Pd electrode on LTCC substrate with smaller particle size achieved higher solder leaching resistance.

  • PDF

Sintering and Dielectric Properties of BaO-Nd2O3-TiO2 Microwave Ceramics with Glass-Ceramics (결정화유리의 첨가에 의한 BNT계 세라믹스의 저온소결 및 마이크로파 유전특성)

  • ;;;;Futoshi Ustuno
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.6
    • /
    • pp.444-449
    • /
    • 2004
  • The microwave dielectric properties of low temperature sintered BaO-Nd$_2$O$_3$-TiO$_2$ (here after BNT) with a Pb-based glass-ceramics were studied in order to investigate their applicability to Low Temperature Co-fired Ceramics (LTCC) for fabrication of multilayered Radio Frequency (RF) passive components module. The BNT ceramics, with 5∼30 wt% of PbO-TiO$_2$-A1$_2$O$_3$-SiO$_2$ based glass-ceramics, were sintered at 105$0^{\circ}C$, which is lower than 130$0^{\circ}C$, sintering temperature of pure BNT ceramics. With increasing the amount of the glass-ceramics, sintering rate of the ceramics become activated due to the softening of glass, resulting in low-temperature densification. BaO-Nd$_2$O$_3$-TiO$_2$ microwave ceramics with 20 wt% glass-ceramics exhibit sintered relative densities over 95% and dielectric constant of 72, quality factor of 1500, and temperature coefficient of frequency of +22 ppm/$^{\circ}C$. This enhanced dielectric properties are attributed to mainly the presence of crystalline phases PbTiO$_3$ within the Pb-based glass.