• Title/Summary/Keyword: low strength concrete

Search Result 1,245, Processing Time 0.032 seconds

Uniaxial Compression Behavior of Reinforced Concrete Circular Columns Confined by Low-Volumetric Ratio High-Strength Lateral Ties (낮은 체적비의 고강도 띠철근으로 구속된 철근콘크리트 원형기둥의 일축압축거동)

  • Hong Ki Nam;Yi Seong Tae;Choi Hong Shik;Lee Si Woo;Kwak Hong Shin;Han Sang Hoon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05a
    • /
    • pp.91-94
    • /
    • 2005
  • Experimental research was conducted to investigate the behavior of RC circular columns confined by high-strength ties. Large scale columns with concrete strength 34.1 and 65.3 MPa were tested under monotonically increasing concentric compression. The test parameters included the volumetric ratio, tie arrangement, tie yield strength, and concrete compressive strength. The results indicate that high-strength concrete columns can be confined to achieve inelastic deformations usually predicted for normal-strength concrete columns. This can be done by providing increasing volumetric ratio and tie yield strength.

  • PDF

Estimation of the Compressive Strength of the Concrete incorporating Mineral Admixture based on the Equivalent Age Method (등가재령방법에 의한 혼화재 종류별 콘크리트의 압축강도 증진해석)

  • Han, Min-Cheol;Han, Cheon-Goo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.7 no.1 s.23
    • /
    • pp.71-77
    • /
    • 2007
  • This paper is to investigate the effect of the curing temperature on strength development of concrete incorporating cement kiln dust(CKD) and blast furnace slag (BS) quantitatively. Estimation of the compressive strength of the concrete was conducted using the equivalent age equation and the rate constant model proposed by Carino. Correction of Carino model was studied to secure the accuracy of strength development estimation by introducing correction factors regarding rate constant and age. An increasing curing temperature results in an increase in strength at early age, but with the elapse of age, strength development at high curing temperature decreases compared with that at low curing temperature. Especially, the use of BS has a remarkable strength development at early age and even at later age, high strength is maintained due to accelerated pozzolanic activity resulting from high temperature. Whereas, at low curing temperature, the use of BS leads to a decrease in compressive strength. Accordingly, much attention should be paid to prevent strength loss at low temperature. Based on the strength development estimation using equivalent age equation, good agreements between measured strength and calculated strength are obtained.

The Grading of Fine Aggregate Affecting on Compressive Strength of Concrete - Based Product Having Low W/C (낮은 물시멘트비를 갖는 콘크리트 제품의 압축강도에 미치는 잔골재의 입도분포)

  • 곽은구;주지현;조성현;김진만
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.89-92
    • /
    • 2001
  • Because the grading of aggregate is major factor affecting on compressive strength and durability of concrete, the standard specification of concrete has proposed that the standard grading should be used to make ordinary concrete having good quality. But, it is not suitable for making product having low W/C because of difference between them in manufacturing processes and demanded efficiencies. This study investigated if the grading of the fine aggregate affects on tamping efficiency and compressive strength of concrete-based product. The results of this study showed that the suitable grading for making concrete-based product ranged from C type(FM:2.77) to D type(FM:3.38).

  • PDF

Effect of curing temperature and blast furnace slag concrete on concrete strength development (양생온도가 고로슬래그 콘크리트의 강도발현에 미치는 영향분석)

  • Lee, Kyu-Dong;Jun, Myeong-Il;Lee, Chang-Soo;Kim, Dong-Sik
    • Journal of the Society of Disaster Information
    • /
    • v.2 no.1
    • /
    • pp.129-137
    • /
    • 2006
  • The present work is attempt to evaluate the temperature dependence of blast furnace slag concrete(BFSC) based on the concrete strength cured with different curing temperatures and ages. A equivalent substitution index(ESI) was induced to explain temperature dependence of concrete quantitatively as well as concrete strength. The results from compressive strength showed substantial crossover effect. which is the phenomenon that the compressive strength cured at low temperature becomes stronger than the one cured at high temperature. The crossover effect found more definitely on BFSC than plain concrete.. The ESI became 1.1 and 1.0 for the BFSC cured at $20^{\circ}C$ and $30^{\circ}C$ after age of 56 days, respectively. Which means that the contribution to strength development of blast furnace slag per unit mass is stronger than that of the Portland cement. It was considered therefore that the optimum curing temperature for BFSC is $20^{\circ}C$.

  • PDF

The Characteristics of Strength Development on Concrete with Low Heat Cement and High Volume Fly-Ash (저열 시멘트 HVFAC 강도 발현 특성)

  • Park, Chan-Kyu;Lee, Seung-Hoon;Kim, Han-Jun;Kim, Sang-Jun;Lee, Tae-Wang
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.637-640
    • /
    • 2008
  • In this study, the characteristics of strength development on high volume fly ash concrete(HVFAC)with Type 4 cement was experimentally investigated. Three levels of W/B were selected. Four levels of fly ash replacement ratios and two levels of silica fume replacement ratios were adopted. In the concrete mix, the water content of 125kg/m$^3$ was used, which is less than that of usual water content. As a result, it appeared that the compressive strength gradually decreased with increasing fly ash replacement ratio until 91days. However, regarding the compressive strength, the proper replacement ratio is about 20%, which is low compared to Type I cement case. It was observed that the tensile strength is proportional to the 0.72 power of the compressive strength. It appears that the prediction equation presented in Concrete Standard Specification overestimate the tensile strength in the low strength range, underestimate the tensile strength in the hi호 strength range.

  • PDF

Compressive Strength Characteristics of 3D Printing Concrete in Low Temperature Environment by Using Early Strength Improvement Type Additive (조강형 첨가제 사용에 따른 저온환경에서의 3D 프린팅 콘크리트의 압축강도 특성)

  • Yoo, Byung-Hyun;Lee, Dong-gyu;Park, Jong-Pil;Hwang, Byoung-Il
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.10
    • /
    • pp.386-392
    • /
    • 2020
  • The self-weight of the 3D printing concrete increases with increasing printing height. Therefore, the lower layer must be hardened within a suitable time to secure continuous printing performance. In particular, the hardening speed of concrete is slow in the winter season when the temperature was low. Hence, the early strength of 3D printing concrete requires improvement. In domestic and international literature, cases of increasing the early strength of concrete using inorganic chemical additives, such as amine-based, nitrate-based, sodium-based, and calcium-based, have been reported. In this study, early strength improvement-type additive samples (amine-based, nitrate-based, sodium-based) were prepared, and their performance was evaluated. When using a nitrate-based additive, the early strength was increased significantly in a 10 ℃ environment. In addition, it was possible to secure a higher early strength than the existing 3D printing concrete mixed at 20 ℃.

Estimation of Compressive Strength of Concrete Incorporating Admixture (혼화재 치환 콘크리트의 압축강도 증진해석)

  • Joo Eun-Hee;Pei Chang-Chun;Han Min-Cheol;Sohn Myoung-Soo;Jeon Hyun-Gyu;Han Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2005.11a
    • /
    • pp.75-78
    • /
    • 2005
  • This raper investigates the effect of curing temperature on strength development of concrete incorporating cement kiln dust(CKD) and blast furnace slag (BS) quantitatively. Estimation of compressive strength of concrete was conducted using equivalent age equation and rate constant model. An increasing curing temperature results in an increase in strength at early age, but with the elapse of age, strength development at high curing temperature decreases compared with that at low curing temperature. Especially, the use of 35 has a remarkable strength development at early age and even at later age, high strength is maintained due to accelerated pozzolanic activity resulting from high temperature. Whereas, at low curing temperature, the use of BS leads to a decrease in compressive strength. Accordingly, much attention should be paid to prevent strength loss at low temperature. Based on the strength development estimation using equivalent age equation, good agreements between measured strength and calculated strength are obtained.

  • PDF

Mechanical properties and adiabatic temperature rise of low heat concrete using ternary blended cement

  • Kim, Si-Jun;Yang, Keun-Hyeok;Lee, Kyung-Ho;Yi, Seong-Tae
    • Computers and Concrete
    • /
    • v.17 no.2
    • /
    • pp.271-280
    • /
    • 2016
  • This study examined the mechanical properties and adiabatic temperature rise of low-heat concrete developed based on ternary blended cement using ASTM type IV (LHC) cement, ground fly ash (GFA) and limestone powder (LSP). To enhance reactivity of fly ash, especially at an early age, the grassy membrane was scratched through the additional vibrator milling process. The targeted 28-day strength of concrete was selected to be 42 MPa for application to high-strength mass concrete including nuclear plant structures. The concrete mixes prepared were cured under the isothermal conditions of $5^{\circ}C$, $20^{\circ}C$, and $40^{\circ}C$. Most concrete specimens gained a relatively high strength exceeding 10 MPa at an early age, achieving the targeted 28-day strength. All concrete specimens had higher moduli of elasticity and rupture than the predictions using ACI 318-11 equations, regardless of the curing temperature. The peak temperature rise and the ascending rate of the adiabatic temperature curve measured from the prepared concrete mixes were lower by 12% and 32%, respectively, in average than those of the control specimen made using 80% ordinary Portland cement and 20% conventional fly ash.

Shear Strength and Deformability of HSC Shear Walls (고강도 콘크리트 전단벽의 강도와 변형능력)

  • 윤현도;최창식;오영훈;이훈희
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.925-930
    • /
    • 2003
  • Provisions for ACI 318-02 and NZS 3101 pertaining to shear design of shear walls evaluated the applicability of high-strength, concrete shear walls subjected to lateral loads. Results of 73 tests of reinforced concrete shear walls were reviewed. Evaluation of test results conducted in Korea, England, America, Japan, and Australia for low-aspect ratio walls indicates that the nominal unit shear strength($\phi$=1.0) calculated using the provisions of ACI and NZS does not represent the observed shear strength well. Based on the limited database considered in this study, a reasonable lower bound to the shear strength of high-strength concrete shear walls is found to be $\sqrt[0.4]{f_{cu}}$ MPa. Similar to that of normal strength concrete walls, the rate of increase of the measured shear strength with $$\rho$_n/ㆍf_y$ is less than 1.0. Therefore, the rate of increase of shear strength attributable to the web reinforcement in shear walls appears to be overestimated by the modified truss analogy.

  • PDF

Finite element modeling of RC columns made of inferior concrete mix strengthened with CFRP sheets

  • Khaled A. Alawi, Al-Sodani;Muhammad Kalimur ,Rahman;Mohammed A., Al-Osta;Omar S. Baghabra, Al-Amoudi
    • Earthquakes and Structures
    • /
    • v.23 no.5
    • /
    • pp.403-417
    • /
    • 2022
  • Reinforced concrete (RC) structures with low-strength RC columns are rampant in several countries, especially those constructed during the early 1960s and 1970s. The weakness of these structures due to overloading or some natural disasters such as earthquakes and building age effects are some of the main reasons to collapse, particularly with the scarcity of data on the impact of aspect ratio and corner radius on the confinement effectiveness. Hence, it is crucial to investigate if these columns (with different aspect ratios) can be made safe by strengthening them with carbon fiber-reinforced polymers (CFRP) sheets. Therefore, experimental and numerical studies of CFRP-strengthened low-strength reinforced concrete short rectangular, square, and circular columns were studied. In this investigation, a total of 6 columns divided into three sets were evaluated. The first set had two circular cross-sectional columns, the second set had two square cross-section columns, and the third set has two rectangular cross-section columns. Furthermore, FEM validation has been conducted for some of the experimental results obtained from the literature. The experimental results revealed that the confinement equations for RC columns as per both CSA and ACI codes could give incorrect results for low-strength concrete. The control specimen (unstrengthened ones) displayed that both ACI and CSA equations overestimate the ultimate strength of low-strength RC columns by order of extent. For strengthened columns with CFRP, the code equations of CSA and ACI code overestimate the maximum strength by around 6 to 13% and 23 to 29%, respectively, depending on the cross-section of the column (i.e., square, rectangular, or circular). Results of finite element models (FEMs) showed that increasing the layer number of new commonly CFRP type (B) from one to 3 for circular columns can increase the column's ultimate loads by around eight times compared to unjacketed columns. However, in the case of strengthened square and rectangular columns with CFRP, the increase of the ultimate loads of columns can reach up to six times and two times, respectively.