• Title/Summary/Keyword: low speed region

Search Result 444, Processing Time 0.024 seconds

Field-Oriented Speed Control of Induction Machine without Speed Sensor in Overall Speed Range (속도검출기가 없는 유도전동기의 광범위한 속도 영역에서의 자속 기준 속도 제어)

  • Ryu, Hyeong-Min;Ha, Jeong-Ik;Seol, Seung-Gi
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.49 no.5
    • /
    • pp.338-344
    • /
    • 2000
  • This paper proposes a field-oriented control strategy without speed sensor in overall speed range. At low speed region including zero speed, the electrical saliency which is due to the main flux saturation is used in order to estimate an instantaneous flux position. This electrical saliency can be obtained from the difference of high frequency impedance by the high frequency signal injection. This method enables the stable operation at zero speed or stator frequency even under heavily loaded condition. However, because of the high frequency signal injection the loss and noise in motor increase and the voltage margin is reduced as the motor speed increases. Therefore, this algorithm must be supplemented with the algorithm based on the electrical model of motor, which is conventionally used in the region except the low speed. This paper proposes the combination algorithm between the high frequency signal infection method and the adaptive observer, in which the rotor flux and motor speed can be simultaneously estimated by the adaptive control theory. This combination algorithm enables the stable operation of field-oriented speed control without speed sensor in overall speed range. This is verified by experimental results.

  • PDF

Performance Improvement of an Induction Motor in Low Speed Region

  • Kim, Seong-Hwan;Park, Tae-Sik;Kim, Nam-Jeung;Yoo, Ji-Yoon;Park, Gwi-Tae
    • Journal of IKEEE
    • /
    • v.1 no.1 s.1
    • /
    • pp.64-72
    • /
    • 1997
  • Since the average speed calculated with encoder pulses inevitably has time delay, the control performance as well as the system stability is deteriorated. especially at the low speed region. Additionally, the distorted inverter output voltage due to the dead time effects and the forward voltage drops of the VSI (Voltage Source Inverter) causes torque ripples and their effects are more severe at the low speed operation of an induction motor. In this paper, an accurate speed estimation method using Kalman Filter Algorithm is presented to improve the performance of an induction motor speed control with a low precision encoder at low speed legion. The dead time effects and the forward voltage drops of the VSI are feedforwardly compensated to produce an exact inverter output voltage.

  • PDF

Speed Sensorless Vector Control of Induction Machine in the Field Weakening Region (약계자영역에서 유도전동기의 속도센서리스 벡터제어)

  • Sin, Myeong-Ho;Hyeon, Dong-Seok
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.50 no.10
    • /
    • pp.508-512
    • /
    • 2001
  • This paper investigates the problem of the speed estimation of conventional speed sensorless stator flux-oriented induction machine drive in the field weakening region and proposes a new speed estimation scheme to estimate speed exactly in transients in the field weakening region. The error included in the estimated rotor speed is removed by not a low pass filter but Kalman filter so that exact speed estimation in transients is achieved.

  • PDF

Instantaneous Speed and Mechanical Inertia Moment Estimation for the improvement of the Low Speed Control Characteristics of Induction Machines (유도전동기 저속 운전 특성 개선을 위한 순시 속도 및 기계관성모먼트 추정)

  • Hyun, Dong-Seok;Kim, Nam-Joon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.1 no.1
    • /
    • pp.12-19
    • /
    • 1996
  • The purpose of this paper is the improvement of the speed control characteristics of induction machines suited the low resolution incremental-type encoder in a low speed region. In order to improve the control characteristics in a low speed range, we propose that the instantaneous speed control method by the instantaneous speed detection which is implemented by the disturbance torque observer. Also, in case of the speed control by the instantaneous speed detection, the simple estimation method of the mechanical inertia moment is proposed. We will the carry out the mathematical verification of the proposed theory by the theoretic advisement connected with the convergence relationship of the estimated inertia moment to the real mechanical inertia moment. Computer simulations and experiments by the IGBT inverter adopting DSP is performed to verify the proposed method.

  • PDF

Satellite Attitude Control on Reaction Wheel Low-Speed Region (반작용휠 저속구간에서의 위성자세제어)

  • Son, Jun-Won;Park, Young-Woong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.11
    • /
    • pp.967-974
    • /
    • 2017
  • Reaction wheel shows nonlinear torque response on low-speed region due to friction. Thus precise satellite attitude control on this region is hard to achieve. Previous research tries to solve this problem, by compensating friction or applying dither command. However, due to difficulties of drag torque modeling or frequent zero wheel speed crossing, these methods are not suitable to apply on the real satellite attitude control. To solve this problem, we propose the attitude controller gain adjustment method based on the attitude error.

Sensorless control of the Next Generation High Speed Drive System in low speed region (차세대 고속전철 저속영역에서의 센서리스 제어)

  • Jin, Kang-Hwan;Suh, Yong-Hun;Lee, Sang-Hyun;Kim, Yoon-Ho
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.12
    • /
    • pp.82-87
    • /
    • 2011
  • In this paper, a sensorless speed control system is designed for the next generation high speed railway at zero and low speed region. The applied vector control scheme is a maximum torque per ampere(MTPA) method to utilize reluctance torque of IPMSM. The designed sensorless control scheme is a rotating high frequency voltage signal injection method. To verify the designed system, a simulator for the vector controller and sensorless controller is implemented using Matlab/simulink.

A Study On Fast Responce Control of DC Servo Motor at low Speed Region (저속 영역에서 직류 서어보 전동기의 속응성 제어에 관한 연구)

  • Yoon, Byung-Do;Lee, Heung-Bae
    • Proceedings of the KIEE Conference
    • /
    • 1988.11a
    • /
    • pp.414-417
    • /
    • 1988
  • This paper presents a study on the operation of a digitally controlled DC servo motor drive at low speed region. Two schemes aiming to improve the transient behavior of the speed control system are considered. The first scheme is the current positive feedback scheme to reduce the sensitivity of the system with respect to the load torque variations. The second one is the speed observer based on a motor model. Finally, the two schemes are studied by simulation and then verified experimetally using a prototype DC motor drive.

  • PDF

Analysis of the Crankshaft Speed Fluctuation in Intra-Cycle (사이클 내 크랭크축 각속도의 변동 해석)

  • 배상수;임인건;김세웅;김응서
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.2
    • /
    • pp.166-172
    • /
    • 1996
  • This paper presents the characteristics of the crankshaft speed fluctuations. To analyze them, the speed waveforms were measured both at the flywheel and at the front end of the engine. The speed waveform measured at the flywheel shows better result than at the front end one, because of the torsional vibration and the auxiliary components. And the patterns of the speed fluctuations are classified into three region, such as low load, middle load and high load region with the variations of the loads. Additionally, as the engine speeds increase and the loads decrease, the analysis of the speed becomes more difficult due to lower variation of the speed. And in all the regions, the main frequency component of the speed fluctuation is firing frequency.

  • PDF

PMSM Sensorless Operation for High Variable Speed Compressor (고속압축기 구동 PMSM을 위한 센서리스 운전)

  • 석줄기;이동춘;황준현
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.51 no.12
    • /
    • pp.676-681
    • /
    • 2002
  • This paper presents the implementation and experimental investigation of sensorless speed control for a variable-speed PMSM(Permanent Magnet Synchronous Motor) in super-high speed compressor operation. The proposed control scheme consists of two different sensorless algorithms to guarantee the reliable starting operation in low speed region and full torque characteristics using the vector control in high speed region. An automatic switching technique between two control modes is proposed to minimize the speed and torque pulsation during the switching instant of control mode. A testing system of 3.3㎾ PMSM has been built and 90% load test results at 7000r/min are presented to examine the feasibility of proposed sensorless control scheme.

Speed Sensorless Stator Flux-Oriented Control of Induction Motor in the Field Weakening Region Using Luenberger Observer (루엔버거 관측기를 이용한 약계자 영역에서 유도전동기의 속도 센서리스 고정자자속 기준제어)

  • Kuen Tae-Sung;Shin Myoung-Ho;Hyun Dong-Seok
    • Proceedings of the KIPE Conference
    • /
    • 2002.11a
    • /
    • pp.3-6
    • /
    • 2002
  • In a conventional speed sensorless stator flux-oriented(SFO) induction motor drive system, when the estimated speed is transformed into the sample-data model using the first-forward difference approximation, the sampled data model has a modeling error which, in turn, produces an error in the rotor speed estimation. The error included in the estimated speed is removed by the use of a low pass filter (LPF). As the result, the delay of the estimated speed occurs in transients by the use of the LPF This paper investigates the problem of a conventional speed sensorless SFO system due to the delay of estimated speed in the filed weakening region. In addition, this paper proposes a method to estimate exactly speed by using Luenberger observer, The proposed method is verified by experiment with a 5-hp induction motor drive.

  • PDF