• 제목/요약/키워드: low sintering temperature

검색결과 768건 처리시간 0.036초

원환형 적층 압전 액츄에이터의 전기적 특성 (Electrical Properties of Ring-type Multilayer Piezoelectric Actuator)

  • 김국진;류주현
    • 한국전기전자재료학회논문지
    • /
    • 제20권10호
    • /
    • pp.869-872
    • /
    • 2007
  • In this study, in order to develop low temperature sintering ultrasonic nozzle, single-layer and multilayer ring-type piezoelectric actuators were manufactured using PMN-PNN-PZT ceramics, And then the electrical properties were investigated. A ring-type piezoelectric actuator was modeled by ATILA program using finite element method(FEM). The piezoelectric actuator dimension was $\Phi26.5$ (outer diameter), $\Phi12$ (inner diameter), 3.5 mm (thickness). By FEM analysis, resonant and anti-resonant frequencies were appeared as 56.7 kHz and 61.5 kHz. The displacement increased with the increases of the number of layer. Based on the result, ring-type multilayer piezoelectric actuators were manufactured at low co-firing temperature of $940^{\circ}C$. The resonant resistance decreased with the increases of the number of layer. And also, the capacitance increased with the increases of the number of layer. The mechanical quality factor (Qm) decreased with the increases of the number of layer.

적층 원환형 압전 진동자의 전기적 특성 (Electrical Properties of Multilayer Ring-type Piezoelectric Vibrator)

  • 김국진;이상호;류주현;윤현상;염경현
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2007년도 하계학술대회 논문집 Vol.8
    • /
    • pp.254-256
    • /
    • 2007
  • In this study, in order to develop low temperature sintering ceramic ultrasonic nozzle, single-layer and multilayer ring-type piezoelectric vibrators were manufactured using PMN-PNN-PZT ceramics, And then the electrical properties were investigated. The piezoelectric vibrator were sintered at low temperature of $940^{\circ}C$. The resonant resistance decreased with the increases of the number of layer. And also, the capacitance increased with the increases of the number of layer. The mechanical quality factor (Qm) decreased with the increases of the number of layer.

  • PDF

저온 소결용 NTC 서미스터의 제조 및 특성 (Fabrication and characteristics of NTC thermistor for low temperature sintering)

  • 구본급
    • 한국결정성장학회지
    • /
    • 제28권1호
    • /
    • pp.28-37
    • /
    • 2018
  • 저온에서 소성이 가능한 NTC 서미스터의 제조를 위해 $Mn_{1.85}Ni_{0.25}Co_{0.9}O_4$ 기본 조성의 NTC 서미스터의 전기적 특성에 미치는 무연계 프릿트(frit)와 $RuO_2$ 첨가의 영향에 대하여 연구하였다. 기본 NTC 조성에 프릿트를 10 wt% 첨가하여 $1000^{\circ}C$에서 소결한 시편의 소결특성이 프릿트를 첨가하지 않고 $1200^{\circ}C$에서 소결한 시편과 유사하였다. 그러나 프릿트의 첨가량이 증가할수록 전기저항과 B 정수는 높게 나타났다. 저항을 낮추기 위해 프릿트를 10 wt% 첨가한 조성에 $RuO_2$를 0, 2, 5 wt% 첨가하여 $1000{\sim}1200^{\circ}C$에서 소결하여 NTC 서미스터를 제조 한 후 소결 및 전기적 특성을 측정하였다. $RuO_2$ 첨가량이 많을수록 전기저항과 B 정수는 감소하는 경향을 나타내었으나, $RuO_2$를 5 wt% 첨가하여 $1000^{\circ}C$의 소결온도에서 소결한 소결체가 저항이 가장 낮았고 이후 소결온도 증가에 따라 저항은 오히려 증가하는 경향을 나타내었다. 기본 NTC 조성에 10 wt%의 프릿트와 5 wt%의 $RuO_2$를 첨가하여 $1000^{\circ}C$에서 소결한 NTC 서미스터가 프릿트를 첨가하지 않은 기본 조성의 NTC를 $1200^{\circ}C$에서 소결한 경우와 소결특성과 전기적 특성이 유사하였다.

$ZnWO_4$ 소결특성 및 고주파 유전특성 (Sintering and Microwave Dielectric Properties of $ZnWO_4$)

  • 이경호;김용철
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2001년도 추계학술대회 논문집 Vol.14 No.1
    • /
    • pp.386-389
    • /
    • 2001
  • In this study, development of a new LTCC material using non-glassy system was attempted with repsect to reducing the fabrication process steps and cost down. Lowering the sintering temperature can be achieved by liquid phase sintering. However, presence of liquid phases usually decrease dielectric properties, especially the quality factor. Therefore, the starting material must have quality factor as high as possible in microwave frequency range. And also, the material should have a low dielectric constant for enhancing the signal propagation speed. Regarding these factors, dielectric constants of various materials were estimated by the Clausius-Mosotti equation. Among them, $ZnWO_4$ was turned out the suitable LTCC material. $ZnWO_4$ can be sintered up to 98% of full density at $1050^{\circ}C$ for 3 hours. It's measured dielectric constant, quality factor, and temperature coefficient of resonant frequency were 15.5, 74380GHz, and $-70ppm/^{\circ}C$, respectively. In order to modify the dielectric properties and densification temperature, $B_{2}O_{3}$ and $V_{2}O_{5}$ were added to $ZnWO_4$. 40 mol% $B_{2}O_{3}$ addition reduced the dielectric constant from 15.5 to 12. And the temperature coefficient of resonant frequency was improved from -70 to $-7.6ppm/^{\circ}C$. However, sintering temperature did not change due to either lack of liquid phase or high viscosity of liquid phase. Incorporation of small amount of $V_{2}O_{5}$ in $ZnWO_{4}-B_{2}O_{3}$ system enhanced liquid phase sintering. 0.1 wt% $V_{2}O_{5}$ addition to the $0.6ZnWO_{4}-0.4B_{2}O_{3}$ system, reduced the sintering temperature down to $950^{\circ}C$. Dielectric constant, quality factor, and temperature coefficient of resonant frequency were 9.5, 16737GHz, and $-21.6ppm/^{\circ}C$, respectively.

  • PDF

$ZnWO_4$ 소결특성 및 고주파 유전특성 (Sintering and Microwave Dielectric Properties of $ZnWO_4$)

  • 이경호;김용철
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2001년도 추계학술대회 논문집
    • /
    • pp.386-389
    • /
    • 2001
  • In this study, development of a new LTCC material using non-glassy system was attempted with respect to reducing the fabrication process steps and cost down. Lowering the sintering temperature can be achieved by liquid phase sintering. However, presence of liquid phases usually decrease dielectric properties, especially the quality factor. Therefore, the starting material must have quality factor as high as possible in microwave frequency range. And also, the material should have a low dielectric constant for enhancing the signal propagation speed. Regarding these factors, dielectric constants of various materials were estimated by the Clausius-Mosotti equation. Among them, ZnWO$_4$ was turned out the suitable LTCC material. ZnWO$_4$ can be sintered up to 98% of full density at 105$0^{\circ}C$ for 3 hours. It's measured dielectric constant, quality factor, and temperature coefficient of resonant frequency were 15.5, 74380GHz, and -70ppm/$^{\circ}C$, respectively In order to modify the dielectric properties and densification temperature, B$_2$O$_3$ and V$_2$O$_{5}$ were added to ZnWO$_4$. 40 mol% B$_2$O$_3$ addition reduced the dielectric constant from 15.5 to 12. And the temperature coefficient of resonant frequency was improved from -70 to -7.6ppm/$^{\circ}C$. However, sintering temperature did not change due to either lack of liquid phase or high viscosity of liquid phase. Incorporation of small amount of V$_2$O$_{5}$ in ZnWO$_4$-B$_2$O$_3$ system enhanced liquid phase sintering. 0.lwt% V$_2$O$_{5}$ addition to the 0.6ZnWO$_4$-0.4B$_2$O$_3$ system, reduced the sintering temperature down to 95$0^{\circ}C$ Dielectric constant, quality factor, and temperature coefficient of resonant frequency were 9.5, 16737GHz, and -21.6ppm/$^{\circ}C$ respectively.ively.

  • PDF

소결온도에 따른 PMN-PNN-PZT 미세구조 및 압전특성 (Microstructure and Piezoelectric Properties of PMN-PNN-PZT with the Sintering Temperature)

  • 이현석;류주현;윤현상
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2006년도 추계학술대회 논문집 Vol.19
    • /
    • pp.217-218
    • /
    • 2006
  • In this study, In order to develop the low temperature sintering multilayer piezoelectric actuator, PMN-PNN-PZT system ceramics were manufactured with the sintering temperature, and their microstructure and piezoelectric properties were investigated. At the composition ceramics sintered at $900^{\circ}C$, dielectric constant(${\varepsilone}_r$), electromechanical coupling factor($k_p$), piezoelectric constant($d_{33}$) and mechanical quality factor(Qm) showed the optimal value of 1095, 0.60, 363 and 1055, respectively, for multilayer piezoelectric actuator application.

  • PDF

Effects of Low-Temperature Sintering on Varistor Properties and Stability of VMCDNB-Doped Zinc Oxide Ceramics

  • Nahm, Choon-W.
    • 한국세라믹학회지
    • /
    • 제56권1호
    • /
    • pp.84-90
    • /
    • 2019
  • The varistor properties and stability against dc-accelerated stress of $V_2O_5-Mn_3O_4-Co_3O_4-Dy_2O_3-Nb_2O_5-Bi_2O_3$ (VMCDNB)-doped zinc oxide ceramics sintered at $850-925^{\circ}C$ were investigated. Increasing the sintering temperature increased the average grain size from 4.6 to 8.7 mm and decreased the density of the sintered pellet density from 5.54 to $5.42g/cm^3$. The breakdown field decreased from 5919 to 1465 V/cm because of the increase in the average grain size. Zinc oxide ceramics sintered at $875^{\circ}C$ showed the highest nonlinear coefficient (43.6) and the highest potential barrier height (0.96 eV). Zinc oxide ceramics sintered at $850^{\circ}C$ showed the highest stability: the variation rate of the breakdown field was -2.0% and the variation rate of the nonlinear coefficient was -23.3%, after application of the specified stress (applied voltage/temperature/time).

소결 조제를 이용한 고체산화물 연료전지용 세리아 전해질의 저온소결 특성 연구 (A Study of Ceria on Low-temperature Sintering Using Sintering Aids for Solid Oxide Fuel Cells)

  • 오창훈;송광호;한종희;윤성필
    • 한국수소및신에너지학회논문집
    • /
    • 제25권3호
    • /
    • pp.280-288
    • /
    • 2014
  • SDC (Samarium doped Ceria) electrolyte was developed for Intermediate temperature SOFC ($500^{\circ}C-800^{\circ}C$) which showed a good electrical conductivity. In this study, we used sintering aids to reduce the SDC sintering temperature down to $1000^{\circ}C$, especially which can help the SOFC scale-up. In order to reduce the SDC sintering temperature, $Li_2CO_3$ and $TiO_2$ were used as a sinering aids for decreasing sintering temperature. $Li_2CO_3$ and $TiO_2$ doped SDC sintered at $1000^{\circ}C$ showed 99% of the theoretical density and higher electrical conductivity than the pure SDC sintered at $1500^{\circ}C$. When measuring the OCV (Open circuit voltage) with the $Li_2CO_3$ and $TiO_2$ doped SDC electrolyte, however, the OCV values were lower than the theoretical OCV values which means that the modified SDC still had electronic conductivity.

20mol% Gd-doped 소결체 CeO$_2$ 전해질의 전기적 특성분석 (Characterization for Electrical Properties of Sintered 20mol% Gd-doped CeO$_2$ Electrolyte)

  • 김선재;국일현
    • 한국세라믹학회지
    • /
    • 제35권1호
    • /
    • pp.97-105
    • /
    • 1998
  • 20mol% Gd-doped CeO2 ultrafine powders as a promising electrolyte for the low temperature solid ox-ide fuel cells were synthesized with particle sizes of 15-20 nm using glycine nitrate process(GNP) fol-lowed by sintering their pellets at 150$0^{\circ}C$ for various times in air and then the electrical properties of the sintered pellets were investigated. The sintering behaviors and electrical properties for the sintered 20 sintered mol% Gd-doped CeO2 pellets were analyzed using dilatometer and SEM and AC two-terminal impedance technique respectively. As the heating temperature increased the synthesized powder had the sintering behaviors to show the start of the significant shrink at temperature of about $700^{\circ}C$ and to show the end of the shrink at the temperature of about 147$0^{\circ}C$. When the pellets were sintered with the vaious times at 150$0^{\circ}C$ the temperatuer which the shrink had been already completed the grain sizes in the sintered 20 mol% Gd-doped GeO2 pellets increased with the increase of the sintering time but their electrical resis-tivities showed the minimum value at the sintering time of 10h. It is due that the pellet sintered for 10h had the minimum activation energy fior the electtrical conduction. Thus it is thought that the decrease of the activation energy with the increase of the sintering time to 10h is induced by the enhanced mi-crostructure like the decrease of pore amount and the grain growth and its increase with the sintering times more than 10h is induced by the increase of the amounts of the impurities such as Mg. Al and Si from the sintering atmosphere.

  • PDF

Bendable Photoelectrodes by Blending of Polymers with $TiO_2$ For Low Temperature Dye-sensitized Solar Cells

  • 유기천;리위롱;이도권;김경곤;고민재
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2009년도 제38회 동계학술대회 초록집
    • /
    • pp.319-319
    • /
    • 2010
  • Dye-sensitized solar cells (DSSCs) based on plastic substrates have attracted much attention mainly due to extensive applications such as ubiquitous powers, as well as the practical reasons such as light weight, flexibility and roll-to-roll process. However, conventional high temperature fabrication technology for glass based DSSCs, cannot be applied to flexible devices because polymer substrates cannot withstand the heat more than $150^{\circ}C$. Therefore, low temperature fabrication process, without using a polymer binder or thermal sintering, was required to fabricate necked $TiO_2$. In this presentation, we proposed polymer-inorganic composite photoelectrode, which can be fabricated at low temperature. The concept of composite electrode takes an advantage of utilizing elastic properties of polymers, such as good impact strength. As an elastic material, poly(methyl methacrylate) (PMMA) is selected because of its optical transparency and good adhesive properties. In this work, a polymer-inorganic composite electrode was constructed on FTO/glass substrate under low temperature sintering condition, from the mixture of PMMA and $TiO_2$ colloidal solution. The effect of PMMA composition on the photovoltaic property was investigated. Then, the enhanced mechanical stability of this composite electrode on ITO/PEN substrate was also demonstrated from bending test.

  • PDF