• Title/Summary/Keyword: low oxygen pressure

Search Result 434, Processing Time 0.029 seconds

Characteristics and Fabrication of Micro-Gas Sensors with Heater and Sensing Electrode on the Same Plane (동일면상에 heater와 감지전극을 형성한 마이크로가스센서의 제작 및 특성)

  • Lim, Jun-Woo;Lee, Sang-Mun;Kang, Bong-Hwi;Chung, Wan-Young;Lee, Duk-Dong
    • Journal of Sensor Science and Technology
    • /
    • v.8 no.2
    • /
    • pp.115-123
    • /
    • 1999
  • A micro-gas sensor with heater and sensing electrode on the same plane was fabricated on phosphosilicate glass(PSG, 800nm)/$Si_3N_4$ (150nm) dielectric membrane. PSG film was provided by atmospheric pressure chemical vapor deposition(APCVD), and $Si_3N_4$ film by low pressure chemical vapor deposition (LPCVD). Total area of the fabricated device was $3.78{\times}3.78mm^2$. The area of diaphragm was $1.5{\times}1.5mm^2$, and that of the sensing layer was $0.24{\times}0.24mm^2$. Finite-element simulation was employed to estimate temperature distribution for a square-shaped diaphragm. The power consumption of Pt heater was about 85mW at $350^{\circ}C$. Tin thin films were deposited on the silicon substrate by thermal evaporation at room temperature and $232^{\circ}C$, and tin oxide films($SnO_2$) were prepared by thermal oxidation of the metallic tin films at $650^{\circ}C$ for 3 hours in oxygen ambient. The film analyses were carried out by SEM and XRD techniques. Effects of humidity and ambient temperature on the resistance of the sensing layer were found to be negligible. The fabricated micro-gas sensor exhibited high sensitivity to butane gas.

  • PDF

The surface kinetic properties between $BCl_3/Cl_2$/Ar plasma and $Al_2O_3$ thin film

  • Yang, Xue;Kim, Dong-Pyo;Um, Doo-Seung;Kim, Chang-Il
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.169-169
    • /
    • 2008
  • To keep pace with scaling trends of CMOS technologies, high-k metal oxides are to be introduced. Due to their high permittivity, high-k materials can achieve the required capacitance with stacks of higher physical thickness to reduce the leakage current through the scaled gate oxide, which make it become much more promising materials to instead of $SiO_2$. As further studying on high-k, an understanding of the relation between the etch characteristics of high-k dielectric materials and plasma properties is required for the low damaged removal process to match standard processing procedure. There are some reports on the dry etching of different high-k materials in ICP and ECR plasma with various plasma parameters, such as different gas combinations ($Cl_2$, $Cl_2/BCl_3$, $Cl_2$/Ar, $SF_6$/Ar, and $CH_4/H_2$/Ar etc). Understanding of the complex behavior of particles at surfaces requires detailed knowledge of both macroscopic and microscopic processes that take place; also certain processes depend critically on temperature and gas pressure. The choice of $BCl_3$ as the chemically active gas results from the fact that it is widely used for the etching o the materials covered by the native oxides due to the effective extraction of oxygen in the form of $BCl_xO_y$ compounds. In this study, the surface reactions and the etch rate of $Al_2O_3$ films in $BCl_3/Cl_2$/Ar plasma were investigated in an inductively coupled plasma(ICP) reactor in terms of the gas mixing ratio, RF power, DC bias and chamber pressure. The variations of relative volume densities for the particles were measured with optical emission spectroscopy (OES). The surface imagination was measured by AFM and SEM. The chemical states of film was investigated using X-ray photoelectron spectroscopy (XPS), which confirmed the existence of nonvolatile etch byproducts.

  • PDF

Stability Evaluation of Vitamin-C Inclusion Complexes Prepared using Supercritical ASES Process (초임계 ASES 공정으로 제조된 Vitamin-C 포접복합체의 안정성 평가)

  • Yang, Jun-Mo;Kim, Seok-Yun;Han, Ji-Hyun;Jung, In-Il;Ryu, Jong-Hoon;Lim, Gio-Bin
    • KSBB Journal
    • /
    • v.21 no.2
    • /
    • pp.157-163
    • /
    • 2006
  • A supercritical fluid process, called aerosol solvent extraction system(ASES), is especially suitable to the pharmaceutical, cosmetic and food industries due to its environmentally-friendly, non-toxic and residual solvent-free properties. In particular, the application of the ASES process to the processing of thermo-labile bioactive compounds has received attention of many scientists and engineers because of its low-temperature operating conditions. Unstable substances such as Vitamin-C and Vitamin-A can be effectively protected from degradation during the preparation process, because the ASES process is free from oxygen and moisture. In this study, Vitamin-C was formulated with 2-hydroxypropyl-${\beta}$-cyclodextrin (HP-${\beta$-CD) for enhancement of Vitamin-C stability and bioavailability using the ASES process. To investigate the influence of the preparation process on the stability of Vitamin-C, Vitamin-C/HP-${\beta}$-CD inclusion complexes were prepared using both conventional solvent evaporation method and ASES process, and stored in a 50 mM phosphate buffer solution of pH 7.0 at $25^{\circ}C$ for 24 hours. From the experimental results, the stability of the Vitamin-C/HP-${\beta}$-CD inclusion complex prepared from the ASES process was found to be much higher than that of pure Vitamin-C and the Vitamin-C/HP-${\beta}$-CD inclusion complex prepared by the solvent evaporation method. The stability of Vitamin-C was observed to increase with the decrease of temperature at a constant pressure or with the increase of pressure at a constant temperature.

Effect of Evaluation Conditions on Electrochemical Accelerated Degradation of PEMFC Polymer Membrane (PEMFC 고분자 막의 전기화학적 가속 열화에 미치는 평가조건들의 영향)

  • Sohyeong Oh;Donggeun Yoo;Suk Joo Bae;Sun Geu Chae;Kwonpil Park
    • Korean Chemical Engineering Research
    • /
    • v.61 no.3
    • /
    • pp.356-361
    • /
    • 2023
  • In order to improve the durability of the proton exchange membrane fuel cell (PEMFC), it is important to accurately evaluate the durability of the polymer membrane in a short time. The test conditions for chemically accelerated durability evaluation of membranes are high voltage, high temperature, low humidity, and high gas pressure. It can be said that the protocol is developed by changing these conditions. However, the relative influence of each test condition on the degradation of the membrane has not been studied. In chemical accelerated degradation experiment of the membrane, the influence of 4 factors (conditions) was examined through the factor experiment method. The degree of degradation of the membrane after accelerated degradation was determined by measuring the hydrogen permeability and effluent fluoride ion concentration, and it was possible to determine the degradation order of the polymer membrane under 8 conditions by the difference in fluoride ion concentration. It was shown that the influence of the membrane degradation factor was in the order of voltage > temperature > oxygen pressure > humidity. It was confirmed that the degradation of the electrode catalyst had an effect on the chemical degradation of the membrane.

Application of a Single-pulsatile Extracorporeal Life Support System for Extracorporeal Membrane Oxygenation -An experimental study - (단일 박동형 생명구조장치의 인공폐 적용 -실험연구-)

  • Kim, Tae-Sik;Sun, Kyung;Lee, Kyu-Baek;Park, Sung-Young;Hwang, Jae-Joon;Son, Ho-Sung;Kim, Kwang-Taik;Kim. Hyoung-Mook
    • Journal of Chest Surgery
    • /
    • v.37 no.3
    • /
    • pp.201-209
    • /
    • 2004
  • Extracorporeal life support (ECLS) system is a device for respiratory and/or heart failure treatment, and there have been many trials for development and clinical application in the world. Currently, a non-pulsatile blood pump is a standard for ECLS system. Although a pulsatile blood pump is advantageous in physiologic aspects, high pressure generated in the circuits and resultant blood cell trauma remain major concerns which make one reluctant to use a pulsatile blood pump in artificial lung circuits containing a membrane oxygenator. The study was designed to evaluate the hypothesis that placement of a pressure-relieving compliance chamber between a pulsatile pump and a membrane oxygenator might reduce the above mentioned side effects while providing physiologic pulsatile blood flow. The study was performed in a canine model of oleic acid induced acute lung injury (N=16). The animals were divided into three groups according to the type of pump used and the presence of the compliance chamber, In group 1, a non-pulsatile centrifugal pump was used as a control (n=6). In group 2 (n=4), a single-pulsatile pump was used. In group 3 (n=6), a single-pulsatile pump equipped with a compliance chamber was used. The experimental model was a partial bypass between the right atrium and the aorta at a pump flow of 1.8∼2 L/min for 2 hours. The observed parameters were focused on hemodynamic changes, intra-circuit pressure, laboratory studies for blood profile, and the effect on blood cell trauma. In hemodynamics, the pulsatile group II & III generated higher arterial pulse pressure (47$\pm$ 10 and 41 $\pm$ 9 mmHg) than the nonpulsatile group 1 (17 $\pm$ 7 mmHg, p<0.001). The intra-circuit pressure at membrane oxygenator were 222 $\pm$ 8 mmHg in group 1, 739 $\pm$ 35 mmHg in group 2, and 470 $\pm$ 17 mmHg in group 3 (p<0.001). At 2 hour bypass, arterial oxygen partial pressures were significantly higher in the pulsatile group 2 & 3 than in the non-pulsatile group 1 (77 $\pm$ 41 mmHg in group 1, 96 $\pm$ 48 mmHg in group 2, and 97 $\pm$ 25 mmHg in group 3: p<0.05). The levels of plasma free hemoglobin which was an indicator of blood cell trauma were lowest in group 1, highest in group 2, and significantly decreased in group 3 (55.7 $\pm$ 43.3, 162.8 $\pm$ 113.6, 82.5 $\pm$ 25.1 mg%, respectively; p<0.05). Other laboratory findings for blood profile were not different. The above results imply that the pulsatile blood pump is beneficial in oxygenation while deleterious in the aspects to high pressure generation in the circuits and blood cell trauma. However, when a pressure-relieving compliance chamber is applied between the pulsatile pump and a membrane oxygenator, it can significantly reduce the high circuit pressure and result in low blood cell trauma.

Phase Evolution in LiMO2(M=Co,Ni) Cathode Materials for Secondary Lithium Ion Batteries : Effect of Temperature and Oxygen Partial Pressure (리튬 2차 전지용 양극활물질 LiMO2(M=Co,Ni)의 온도와 산소 분압에 따른 상전이 거동)

  • Huang, Cheng-Zhu;Kim, Ho-Jin;Jeong, Yeon-Uk;Lee, Joon-Hyung;Kim, Jeong-Joo
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.4
    • /
    • pp.292-297
    • /
    • 2005
  • $LiMO_{2}(M=Co,Ni)$ samples were synthesized with $Li_{2}CO_{3},\;Co_{3}O_{4}$, and NiO by the solid-state reaction method. In the case of $LiCoO_{2}$, at low temperature$(T=400^{\circ}C)$ spinel structure was synthesized and the obtained spinel phase was transformed to layered phase at high temperature$(T\ge600^{\circ}C)$. The phase transition behaviors of $LiCoO_{2}$ were investigated with various heating temperature and time. The rate of transition was directly proportional to the concentrations of reactant, and activation energy of reaction was around 6.76 kcal/mol. When CoO(rock salt structure) was used as a starting material instead of $Co_{3}O_{4}$(spinel structure), layered structure of $LiCoO_{2}$ was obtained at low temperature. In the case of $LiNiO_{2}$ the transition from layered structure to rock salt structure occurred easily by disordering/ordering reaction, but did not occur in $LiCoO_{2}$. The difference in metal ion radii in $LiCoO_{2}$ and $LiNiO_{2}$ results in different behaviors of phase transitions.

Predictive Thermodynamic Model for Gas Permeability of Gas Separation Membrane (기체 분리막의 투과 특성 예측 모델식 개발)

  • Kim, Jong Hwan;Hong, Sung Kyu;Park, Sang Jin
    • Korean Chemical Engineering Research
    • /
    • v.45 no.6
    • /
    • pp.619-626
    • /
    • 2007
  • It is of special interest in our membrane separation technology due to its low energy consumption and cost, relatively simple equipment, low investment and operation cost, et al. Full scale utilization of such processes can be widely utilized to the various fields. Using the difference of permeability of gas molecules between the filter layers, it is able to separate effectually pure gases from the mixed gases. In this paper, the membranes of PDMS, ${\gamma}-radiated$ PDMS, PTFE, PTFE-X are chosen to develop the predictive model for the separation of pure gases such as oxygen, nitrogen, hydrogen, and other gases from mixed gases. By utilizing the thermodynamic gas properties($\sigma$, $\varepsilon/k$) and experimental data of gas transport characteristics for different polymer membranes, it is able to develop the predictive model equation under the influence of temperature, pressure and polymer characteristics. Predictive model developed in this research showed good agreement with experimental data of gas permeability characteristics for develop four different polymer membranes. The proposed model can also be extended to the general equation for predicting the separation of gases based on the properties of polymeric membranes.

Enhanced Bioslurping System for Remediation of Petroleum Contaminated Soils (Enhanced Bioslurping system을 이용한 유류오염 토양의 복원)

  • Kim Dae-Eun;Seo Seung-Won;Kim Min-Kyoung;Kong Sung-Ho
    • Journal of Soil and Groundwater Environment
    • /
    • v.10 no.2
    • /
    • pp.35-43
    • /
    • 2005
  • Bioslurping combines the three remedial approaches of bioventing, vacuum-enhanced free-product recovery, and soil vapor extraction. Bioslurping is less effective in tight (low-permeability) soils. The greatest limitation to air permeability is excessive soil moisture. Optimum soil moisture is very soil-specific. Too much moisture can reduce air permeability of the soil and decrease its oxygen transfer capability. Too little moisture will inhibit microbial activity. So Modified Fenton reaction as chemical treatment which can overcome the weakness of Bioslurping was experimented for simultaneous treatment. Although the diesel removal efficiency of SVE process increased in proportion to applied vacuum pressure, SVE process was difficulty to remediation quickly semi- or non-volatile compounds absorbed soil strongly. And SVE process had variation of efficiency with distance from the extraction well and depth a air flow form of hemisphere centering around the well. Below 0.1 % hydrogen peroxide shows the potential of using hydrogen peroxide as oxygen source but the co-oxidation of chemical and biological treatment was impossible because of the low efficiency of Modified Fenton reaction at 0.1 % (wt) hydrogen peroxide. NTA was more efficiency than EDTA as chelating agent and diesel removal efficiency of Modified Fenton reaction increased in proportion to hydrogen peroxide concentration. Hexadecane as typical aliphatic compound was removed less than Toluene as aromatic compound because of its structural stability in Modified Fenton reaction. What minimum 10% hydrogen peroxide concentration has good remediation efficiency of diesel contaminated groundwater may show the potential use of Modified Fenton reaction after bioslurping treatment.

The Study on the Relationship Between the Duration of Chest Vibration prior to Endotracheal Suctioning and the Changes in Oxygen Saturation in Low-Birth-Weight Infants (저체중아에 있어 기관내 흡인전 흉부진동법의 기관과 산소포화 변화간의 관계 연구)

  • Ahn, Young-Mee
    • Journal of Korean Academy of Nursing
    • /
    • v.25 no.3
    • /
    • pp.597-607
    • /
    • 1995
  • 1960년대 이후 인공호흡기(mechanical ventilator)의 보급과 최근 의료과학의 발달, 간호의 질적 향상의 결과로 저체중출생아를 포함한 고위험 신생아의 생존율이 높아져왔다. 호흡장애증후군(RDS)은 일차적으로 폐포의 완전한 확장을 위해 필요한 계면활성물질(surfactant)의 부족, 미발달된 심폐기능에 의한 병리적 현상으로 저체중아의 가장 큰 원인이 되어왔다. RDS로 인해 인공호흡기에 의존해 있는 저체중아의 경우 적절한 산소공급과 이를 위한 호흡의 유지는 치료의 가장 큰 핵심이 되며, 이를 위한 기관내 흑은 비인두 흡인 (nasopharyngeal suction)은 신생아 중환자실(NICU)의 가장 중요한 간호행위가 되어왔다. 인공호흡기를 위한 기관삽관은 그 자체가 기도의 성모운동을 방해하고 기침반사를 억제시켜 폐 분비물의 효과적 배출을 억제하며, 특히 저체중아의 경우 조산과 관련하여 미발달된 흥곽운등과 심폐기능은 폐분비물의 이동을 저해하는 요소이다. 따라서 기도내의 분비물의 이동을 효과적으로 하여 흡인 시에 최대한의 효과를 돕기 위해 흥곽 물리요법(chest physiotheraphy : CPT)의 한 형태인 흉곽진동법 (Chest Vibration : CV)가 행해져 왔다. 그러나 저체중아를 위한CV의 임상적 적용은 그 대상의 생리적 특성, CV의 적용부위(site)와 기간(duration)에 대한 과학적 근거 없이 만성감염이나 폐질환을 가진 성인이나 cystic fibrosis환자를 위한 CV protocol을 무분별하게 채택하여 저체중아에게 행하여져 왔다 이에 본 연구자는 저체중아에 대한 CV의 안전성을 평가하고, 이에 기초하여 저체중아에게 바람직한CV의 형태를 알아보고자 본 연구를 시작하였다. 연구설계는 CV의 안전성을 평가하기 위한 실험연구이다. CV의 안전성은 RDS치료의 가장 일차적 목표인 oxygenation변화에 의해 평가될 수 있으므로, 본 실험 연구에서는 Pulse oximeter에 의해 계속적으로 측정된 산소포화 변화(oxygen saturation change)를 측정하였다. 실험대상은 미국동부에 위치한 대학병원의 NICU에 입원하여 RDS와 관련된 호흡장애로 인공호흡기에 의존해 있는 10명의 저체중아였다. 인공호흡기에 의존된 모든 저체중아는 Pulse oximeter와 심폐기능 측정기(cardiopulmonary monitor)에 의해 산소공급과 호흡상태가 계속 측정되고 있었다. 실험대상의 평균 출생시 몸무게는 평균 1,3050gm(SD=580.6)이었고, 임신월령 은 평균 28.6주(SD=3.1)였다. RDS가 그들의 일차적 진단명이었고, 그중 4명은 pneumonia, atelectasis의 합병증을 가지고 있었다. 10명중 6명은 intermittent mandatory ventilation(IMV)의 형태로, 4명은 continuous positive airway pressure(CPAP)의 형태로 인공호흡기에 의존되어 있었고 CV시의 FiO2는 평균 42.3(SD=21.2)였다. CV는 중환아용 소형진동기 (minivibrator)를 이용해 가각 10명 의 간호사에 의해 행하여 졌고, 최소 22초에서 최대 100초 동안 실시되었다. 50%의 간호사는 30초에서 40초간 CV를 실시하였으며, CV의 적용부위도, 전후 흉곽부위, 혹은 병변이 있는 좌 우측, 흑은 양쪽 흉벽 등으로 다양했고, 적용방법도 원형으로 돌려가며(circular motion), 혹은 아래에서 위로, 혹은 아무런 기준없이 간호사의 기호에 따라 다양하게 적용되었다. 산소포화의 변화는 CV가 행해지기 전.후로 5초동안 관찰되었다. 연구의 결과, 산소포화 변화는 비 모수통계(non parametric statistics)의 일종인 Matched Paired Wilcoxon test로 분석 한 결과 CV후에 3%의 감소를 보였다(P<.05). 저체중아에 있어 산소포화의 3%감소는 임상적으로 중요한 의미가 없다고 사료되어지며, 실제 흡인전의 과도호흡에 의해 CV를 행하기 이전의 산소공급수준으로 돌아 왔다. CV실시 기간과 산소포화와의 상관관계는 비 모수통계인 Spearman rho correlation coefficient를 이용하여 분석하였는데, 이 두 변수는 서로 관계가 없는 것으로 나타났다(P>.05) 또한 CV와 흡인 후에 각각의 간호사들에게 CV를 필요로 한 저체중아의 기준, 적용부위, 기간, 방법등에 대한 기준을 물었으나 대상의 특성에 따른 간호사정에 의존하기보다는 간호사 각자의 선호하는 방법이나 습관에 라 행하는 것으로 나타났다. 결론적으로 CV와 산소포화 변화와의 관계, NICU에서 관찰된 CV의 임상적 적용을 기초로 저체중아에게 안전한 CV protocol은 신생아용 소형 진동기를 이용하여, 양쪽 흉곽의 늑골하측 변연 부위(low lateral costal margin)에서 시작하여 흉골 중앙부위 방향으로 30초 동안 진동기를 적용하는 것이 좋은 것으로 나타났다. 이에 CV의 효과를 평가하기 위한 보다 과학적인 접근방법으로, CV와 흡인의 결과인 가래(sputum)에 대한 연구를 제언하는 바이다.

  • PDF

The Prognostic role of Electrocardiographic Signs of Cor Pulmonale in Chronic Obstructive Pulmonary Disease (폐성심을 시사하는 심전도 소견 유.무에 따른 만성폐쇄성 폐질환 환자의 예후)

  • Shin, Moo-Chul;Park, Jae-Yong;Bae, Moon-Seob;Bae, Nack-Cheon;Chae, Po-Hee;Kim, Chang-Ho;Jung, Tae-Hoon
    • Tuberculosis and Respiratory Diseases
    • /
    • v.48 no.6
    • /
    • pp.944-955
    • /
    • 2000
  • Background : In patients with chronic obstructive pulmonary disease(COPD), several factors have been associated with a poor prognosis. These include old age, low $FEV_1$ low diffusing capacity, high alveolar-arterial oxygen pressure difference, and finally cor pulmonale. This study was done to investigate if the ECG signs suggesting cor pulmonale were independent prognostic factors in patients with COPD. Method : We analyzed ECG, pulmonary function data and arterial blood gas values in 61 patients who were admitted through the emergency department with an acute exacerbation of COPD. The ECG signs reflecting cor pulmonale were right strial overloading(RAO), right bundle branch block, right ventricular hypertrophy and low-voltage QRS. The 61 patients were divided into 2 groups ; group I with no ECG signs(n=36) and group II with one or more ECG signs(n=25) suggesting cor, pulmonale. Results : Poor, prognostic factors by univariate analysis were low $FEV_1$, $FEV_1$ % pred., VC % pred., DLco, DLco % pred., $PaO_2$ and $SaO_2$ high $PaCO_2$ presence of ECG signs reflecting cor pulmonale, presence of mental status change, use of mechanical ventilator, and long term use of glucocorticoid. A multivariate analysis indicated that age(risk ratio=1.13, 95% confidence interval 1.05-1.23), DLco % pred. (risk ratio=0,97. 95% confidence interval 0.94-0.99), $PaO_2$ (risk ratio=0.95, 95% confidence interval 0.90-0.99) and RAO(risk ratio=5.27, 95% confidence interval 1.40-19.85) were independent prognostic factors of survival. There was a significant difference in survival between the patients with and without RAO(p=0.038). The survival rates at 1, 2, and 5 years were 94.5%. 81.4%, and 50.0% in patients without RAO and 82.4%, 70.6%, and 27.5% in patients with RAO, respectively. Conclusion : These results suggest that the presence of ECG signs reflecting cor pulmonale is a predictor of survival and that RAO of these ECG signs is a significant independent predictor of survival in patients with COPD.

  • PDF