Application of a Single-pulsatile Extracorporeal Life Support System for Extracorporeal Membrane Oxygenation -An experimental study -

단일 박동형 생명구조장치의 인공폐 적용 -실험연구-

  • Kim, Tae-Sik (Dept. of Anatomy, Korea University Medical College) ;
  • Sun, Kyung (Dept. of Thoracic and Cardiovascular Surgery, Korea University Medical College) ;
  • Lee, Kyu-Baek (Dept. of Biomedical Engineering, Korea University Medical College/Korea Artificial Organ Center) ;
  • Park, Sung-Young (Dept. of Biomedical Engineering, Korea University Medical College/Korea Artificial Organ Center) ;
  • Hwang, Jae-Joon (Dept. of Thoracic and Cardiovascular Surgery, Konkuk University Medical College) ;
  • Son, Ho-Sung (Dept. of Thoracic and Cardiovascular Surgery, Korea University Medical College) ;
  • Kim, Kwang-Taik (Dept. of Thoracic and Cardiovascular Surgery, Korea University Medical College) ;
  • Kim. Hyoung-Mook (Dept. of Thoracic and Cardiovascular Surgery, Korea University Medical College)
  • 김태식 (고려대학교 의과대학 해부학교실) ;
  • 선경 (고려대학교 의과대학 흉부외과학교실) ;
  • 이규백 (고려대학교 의과대학 의공학교실/한국인공장기센터) ;
  • 박성영 (고려대학교 의과대학 의공학교실/한국인공장기센터) ;
  • 황재준 (건국대학교 의과대학 흉부외과학교실) ;
  • 손호성 (고려대학교 의과대학 흉부외과학교실) ;
  • 김광택 (고려대학교 의과대학 흉부외과학교실) ;
  • 김형묵 (고려대학교 의과대학 흉부외과학교실)
  • Published : 2004.03.01

Abstract

Extracorporeal life support (ECLS) system is a device for respiratory and/or heart failure treatment, and there have been many trials for development and clinical application in the world. Currently, a non-pulsatile blood pump is a standard for ECLS system. Although a pulsatile blood pump is advantageous in physiologic aspects, high pressure generated in the circuits and resultant blood cell trauma remain major concerns which make one reluctant to use a pulsatile blood pump in artificial lung circuits containing a membrane oxygenator. The study was designed to evaluate the hypothesis that placement of a pressure-relieving compliance chamber between a pulsatile pump and a membrane oxygenator might reduce the above mentioned side effects while providing physiologic pulsatile blood flow. The study was performed in a canine model of oleic acid induced acute lung injury (N=16). The animals were divided into three groups according to the type of pump used and the presence of the compliance chamber, In group 1, a non-pulsatile centrifugal pump was used as a control (n=6). In group 2 (n=4), a single-pulsatile pump was used. In group 3 (n=6), a single-pulsatile pump equipped with a compliance chamber was used. The experimental model was a partial bypass between the right atrium and the aorta at a pump flow of 1.8∼2 L/min for 2 hours. The observed parameters were focused on hemodynamic changes, intra-circuit pressure, laboratory studies for blood profile, and the effect on blood cell trauma. In hemodynamics, the pulsatile group II & III generated higher arterial pulse pressure (47$\pm$ 10 and 41 $\pm$ 9 mmHg) than the nonpulsatile group 1 (17 $\pm$ 7 mmHg, p<0.001). The intra-circuit pressure at membrane oxygenator were 222 $\pm$ 8 mmHg in group 1, 739 $\pm$ 35 mmHg in group 2, and 470 $\pm$ 17 mmHg in group 3 (p<0.001). At 2 hour bypass, arterial oxygen partial pressures were significantly higher in the pulsatile group 2 & 3 than in the non-pulsatile group 1 (77 $\pm$ 41 mmHg in group 1, 96 $\pm$ 48 mmHg in group 2, and 97 $\pm$ 25 mmHg in group 3: p<0.05). The levels of plasma free hemoglobin which was an indicator of blood cell trauma were lowest in group 1, highest in group 2, and significantly decreased in group 3 (55.7 $\pm$ 43.3, 162.8 $\pm$ 113.6, 82.5 $\pm$ 25.1 mg%, respectively; p<0.05). Other laboratory findings for blood profile were not different. The above results imply that the pulsatile blood pump is beneficial in oxygenation while deleterious in the aspects to high pressure generation in the circuits and blood cell trauma. However, when a pressure-relieving compliance chamber is applied between the pulsatile pump and a membrane oxygenator, it can significantly reduce the high circuit pressure and result in low blood cell trauma.

생명구조장치(ECLS)는 호흡부전 및 심부전에 적용하는 장치로 세계적으로 많은 연구개발과 임상시도가 계속되고 있다. 현재까지 생명구조장치의 혈류펌프로는 비박동형 구동장치가 표준으로 사용되고 있으며, 박동형 구동장치는 생리적인 측면에서 유리하지만 급격한 회로압 상승과 그에 따른 혈구손상에 대한 우려가 있고 특히 막형산화기를 사용하는 인공폐 회로에서 기피되어 왔다. 본 연구는 인공폐 실험모델에서 단일 박동형 구동펌프와 막형 산화기 사이에 압력완충장치를 설치함으로써 언급한 부작용을 최소화시키면서 생리적인 박동혈류를 유도할 수 있을 것이라는 가능성을 검증하였다. 실험대상은 올레익산으로 급성 호흡부전증이 유발된 잡견(N=16)을 사용하였다. 실험군은 사용된 구동펌프의 종류와 압력완충장치의 유무에 따라 3개 군으로 분류하였다. 제1군(n=6)은 대조군으로 원심펌프를 이용하였고, 제2군(n=4)은 단일 박동형 구동펌프를 사용하였으며, 제3군(n=6)은 단일 박동형 구동펌프에 압력완충장치를 설치하였다. 실험모델은 흉강 절개 후 우심방-대동맥을 우회시키는 부분 체외순환 형태로, 1.8~2 L/min의 펌프박출량에서 2시간을 구동하였다. 관찰지표는 주로 혈역학 변화, 회로압, 혈액검사 및 혈구세포에 미치는 영향 등에 한정하였다. 맥동압(pulse pressure)은 박동형 구동펌프를 이용한 2군(47$\pm$10 mmHg)과 3군(41$\pm$9 mmHg)에서 비박동형 원심펌프를 이용한 1군(17$\pm$7 mmHg)에 비해 유의하게 높았다(p<0.001). 막형산화기에 걸리는 회로압은 1 군의 경우 222$\pm$8mmHg, 2군의 경우 739 $\pm$ 35 mmHg, 3군의 경우 470$\pm$ 17 mmHg였다(p<0.001). 순환 2시간째의 동맥혈 산소분압은 1군에 비해 박동혈류를 사용하는 2군과 3군에서 현저하게 높았다(77$\pm$41, 96$\pm$48, 97$\pm$25 mmHg; p<0.05). 혈구손상지표인 혈장 유리 헤모글로빈치는 1군에서 가장 낮았고, 2군에서 가장 높았으며, 3군에서 유의하게 감소하였다(55.7$\pm$43.3, 162.8$\pm$113.6, 82.5$\pm$25.1 mg%; p<0.05). 기타 혈액검사치는 특별한 차이가 없었다. 이상의 결과에서 단일 박동형 구동펌프는 비박동형 원심펌프에 비해 막형산화기의 산소교환에 유리한 반면, 회로압과 혈구세포 손상 측면에서 불리하다는 것을 알 수 있었다. 그러나 단일 박동형 구동펌프와 막형 산화기 사이에 압력완충장치를 설치하는 경우, 회로압 상승과 혈구세포손상을 유의하게 감소시킬 수 있었다.

Keywords

References

  1. J. Ped Surg v.27 Prolonged extracorporeal support for noneonatal respiratory failure Weber,T.R.;Tracy,T.F.Jr;Connons,R.;Kountzman,B.;Pennington,D.G. https://doi.org/10.1016/0022-3468(92)90568-R
  2. JAMA v.242 Extracorporeal membrante oxygenationin severe acute respiratory failure Zapal,W.M.;Snider,M.T.;Hill,J.D.(et al)
  3. Extracorporeal cardiopulmonary support in critical care, Ann Arbor. Extracorporeal life support organization The development of prologned extracorporeal circulation Kanto,W.P.Jr.;Shapiro,M.B.;Zwischenberger,J.B.;Bartlent,R.H.
  4. J,. App. Physiol. v.56 Patholophysiolohgical patterns of resolution from acute oleic acid bung injury in the dog Schoene,R.B.;Roberton,H.T.;Thorning,D.R.;Springmeyer,S.C.;Hiastala,M.P.;Cheney,F.W. https://doi.org/10.1152/jappl.1984.56.2.472
  5. Extracorporeal cardiopulmonary support in critical care, Ann Arbor. Extracorporeal life support organization An introduction to Extra-corporeal life support Kanto,W.P.Jr.;Shapiro,M.B.;Zwischenberger,J.B.;Bartlent,R.H.
  6. Advanced therapy in cardiac surgery Adult extracorpored life support Mc-Donald,M.;Smedira,N.G.;Franco,K.L.;Verrier,E.D.
  7. The hear-lung machine & related technologies of open heart surgery Austin,J.W.;Harmer,D.L.
  8. Cardiopulmonary bypass: Priciples and management Kenneth,M.T.
  9. Priciples and practices on cardopulmonary bypass Seoul Kim,W.G.;No,J.L.
  10. J Thorac Carfdiovasc Surg v.66 Development of an implantable artificial lung Palmer,A.S.;Collins,J.;Head,L.R.
  11. Ann Arbor Extracorporeal life support organization Extracorporeal cardio-pulmonary support in critical care Zwischenberger,J.B.;Barrlen,R.H.
  12. Int. J. Artif Organs v.9 Successful treatment of experimental neomatal respiratory failure using extracorporeal membrane lung assist Fumagalli,R.;Kolobow,T.;Arosio,P.;Chen,V.;Buckhold,D.K.;Pierce,J.E.
  13. J. Thorac Cardiovasc Surg v.101 Emergency cardiopulmonary bypass support in patients with cardiac arrest Mooney,M.R.;Arom,K.V.;Joyee,L.D.(et al.)
  14. Resuscitation v.30 The determinant of severe cerebral dysfunction in patients undergoing emergency extracorporeal life suport following cardiopulmonary resuscitation Kurose,M.;Okamoto,K.;Sato,T.(et al.) https://doi.org/10.1016/0300-9572(95)00862-N
  15. Ann Thorac Surg v.57 Portable cardiopulmonary bypass resuscitation from prolonged ice-water submersion and asystole Waters,D.J.;Belz,M.;Lawer,D.;Ulstad,D. https://doi.org/10.1016/0003-4975(94)90229-1
  16. Korean J Thorac Cardiovasc Surg v.31 Report for development of Korean protable cardiopulmonary byopass machine I. A comparison of open-versus closed-cher cardiopulmonary resus-ictation in normal dogs Kim,H.M.;Lee,I.S.;Baek,M.J.(et al.)
  17. Korean J Thorac Cardiovasc Surg v.31 Report for development of Korean protable cardiopulmonary byopass machine Ⅱ. A comparison of open-versus closed-cher cardiopulmonary resus-ictation in normal dogs Kim,H.M.;Lee,I.S.;Baek,M.J.(et al.)
  18. Advanced therapy in cardiac surgery Bridge to transplantation with left ventricular assist devices and total artificial heart Arabia,F.A.;Copeland,J.G.;Franco,K.L.;Verrier,E.D.
  19. New Engj J Med v.287 Pulsatile blood flow Milnor,W.R. https://doi.org/10.1056/NEJM197207062870108
  20. Ann Thorac Surg v.36 Pulsatile and nonpulsatile cardiopulmonary bypass: Review of a counterproductive controversy Hickey,P.R.;Buckley,M.J.;Philbin,D.M. https://doi.org/10.1016/S0003-4975(10)60286-X
  21. J Thoracic Cardiovasc Surg v.99 Effects of pulsatile perfusion on plasma catecholamine levels and hemodynamics during and after cardiac operations with cardiopulmonary bypass Minami,K.;Korner,M.M.;Vyska,K.;Kleesiek,K.;Knobi,H.;Korfer,R.
  22. Am J Physiol Heart Circ Physiol v.278 Pulsatile flow enhances endothelium-derived nitric oxide release in the peripheral vasculature Nakano,T.;Tominaga,R.;Ichiro,N.;Hayato,O.;Yasui,H. https://doi.org/10.1152/ajpheart.2000.278.4.H1098
  23. Circulation v.103 Role of calcium-sensitive K+ channels and nitric oxide in invivo coronary vasodilation from enhanced perfusion pulsatility Paolocci,N.;Pagliaro,P.;Isoda,T.;Saavedra,F.W.;Kass,D.A. https://doi.org/10.1161/01.CIR.103.1.119
  24. Am J Physiol Heart Circ Physiol v.285 Differential effects of pulsatile versus steady flow on coronary endothelial membrane potential Qiu,W.P.;Hu,Q.;Paolocci,N.;Ziegeistein,R.C.;Kass,D.A. https://doi.org/10.1152/ajpheart.01072.2002
  25. Am J Resp Crit Care Med v.149 ARDS: clinical lessons from the oleic acid model of avcute lung injury Schuster,D.P. https://doi.org/10.1164/ajrccm.149.1.8111590
  26. J Korean Soc Traumatol v.12 Effects of tidal volume changes in mechanical ventilation management for acute lung injury -An experimental study- Han,S.B.;Baek,K.J.;Kim,J.S.;Cheon,Y.J.;Sun,K.