• Title/Summary/Keyword: low motion

Search Result 1,959, Processing Time 0.03 seconds

Biomechanical Analysis of Arch Support Devices on Normal and Low Arch (정상족과 편평족의 Arch Support 사용에 따른 운동역학적 분석)

  • Park, Seung-Bum;Park, Jae-Young;Kim, Kyung-Hun
    • Korean Journal of Applied Biomechanics
    • /
    • v.20 no.1
    • /
    • pp.91-99
    • /
    • 2010
  • The purpose of this study was to the kinetic variables effects from the use of arch support inserts on low-arched people. We selected 10 people for the research and separated them into 2 groups, 5 people for the normal arched group and 5 people for the low arched group. Each group wear shoes which have a 3 step convertible arch support (level 0, level 2, level 5) and we measured their foot pressure and 3D motion analysis data. As a result, we found that the mean pressure at the heel of the low arched group was decreased when using the arch supports. The arch support induced the correct grounding area for the foot and dispersion of foot pressure. 3D motion analysis found that as the height of the arch support was increased, the movement of the Y-axis(inversion-eversion) was increased to relieve the shock to the heel. The arch support insert limited the range of motion(ROM) of the Z-axis(abduction-adduction) of the low arched person's ankle joint and prevented ankle injury caused by the excessive eversion when walking. Low arched people are seen to be easily tired due to the ineffective shock absorption of the knees and abnormal walking motion. In order to improve the problems, a 3 step convertible arch support(level 5) insert would improve the low-arched people's walking ability. In other words, the low arched people should be expected to walk as well as normal arched people when they wear shoes with the arch support insert.

Object-oriented coder using pyramid structure and local residual compensation (피라미드 구조 및 국부 오차 보상을 이용한 물체지향 부호화)

  • 조대성;박래홍
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.21 no.12
    • /
    • pp.3033-3045
    • /
    • 1996
  • In this paper, we propse an object-oriented coding method in low bit-rate channels using pyramid structure and residual image compensation. In the motion estimation step, global motion is estimated using a set of multiresolution images constructed in a pyramid structure. We split an input image into two regions based on the gradient value. Regions with larte motions obtain observation points at low resolution level to guarantee robustness to noise and to satisfy a motion constraint equation whereas regions with local motions such as eye, and lips get observation points at the original resolution level. Local motion variations and intesity variations of an image reconstructed by the golbal motion are compensated additionally by using the previous residual image component. Finally, the model failure (MF) region is compensated by the pyramid mapping of the previous displaced frame difference (DFD). Computer simulation results show that the proposed method gives better performance that the convnetional one in terms of the peak signal to noise ratio (PSNR), compression ratio (CR), and computational complexity.

  • PDF

A New VLSI Architecture of a Hierarchical Motion Estimator for Low Bit-rate Video Coding (저전송률 동영상 압축을 위한 새로운 계층적 움직임 추정기의 VLSI 구조)

  • 이재헌;나종범
    • Proceedings of the IEEK Conference
    • /
    • 1999.06a
    • /
    • pp.601-604
    • /
    • 1999
  • We propose a new hierarchical motion estimator architecture that supports the advanced prediction mode of recent low bit-rate video coders such as H.263 and MPEG-4. In the proposed VLSI architecture, a basic searching unit (BSU) is commonly utilized for all hierarchical levels to make a systematic and small sized motion estimator. Since the memory bank of the proposed architecture provides scheduled data flow for calculating 8$\times$8 block-based sum of absolute difference (SAD), both a macroblock-based motion vector (MV) and four block-based MVs are simultaneously obtained for each macroblock in the advanced prediction mode. The proposed motion estimator gives similar coding performance compared with full search block matching algorithm (FSBMA) while achieving small size and satisfying the advanced prediction mode.

  • PDF

The Motion-Based Video Segmentation for Low Bit Rate Transmission (저비트율 동영상 전송을 위한 움직임 기반 동영상 분할)

  • Lee, Beom-Ro;Jeong, Jin-Hyeon
    • The Transactions of the Korea Information Processing Society
    • /
    • v.6 no.10
    • /
    • pp.2838-2844
    • /
    • 1999
  • The motion-based video segmentation provides a powerful method of video compression, because it defines a region with similar motion, and it makes video compression system to more efficiently describe motion video. In this paper, we propose the Modified Fuzzy Competitive Learning Algorithm (MFCLA) to improve the traditional K-menas clustering algorithm to implement the motion-based video segmentation efficiently. The segmented region is described with the affine model, which consists of only six parameters. This affine model was calculated with optical flow, describing the movements of pixels by frames. This method could be applied in the low bit rate video transmission, such as video conferencing system.

  • PDF

Low-Complexity Sub-Pixel Motion Estimation Utilizing Shifting Matrix in Transform Domain

  • Ryu, Chul;Shin, Jae-Young;Park, Eun-Chan
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.4
    • /
    • pp.1020-1026
    • /
    • 2016
  • Motion estimation (ME) algorithms supporting quarter-pixel accuracy have been recently introduced to retain detailed motion information for high quality of video in the state-of-the-art video compression standard of H.264/AVC. Conventional sub-pixel ME algorithms in the spatial domain are faced with a common problem of computational complexity because of embedded interpolation schemes. This paper proposes a low-complexity sub-pixel motion estimation algorithm in the transform domain utilizing shifting matrix. Simulations are performed to compare the performances of spatial-domain ME algorithms and transform-domain ME algorithms in terms of peak signal-to-noise ratio (PSNR) and the number of bits per frame. Simulation results confirm that the transform-domain approach not only improves the video quality and the compression efficiency, but also remarkably alleviates the computational complexity, compared to the spatial-domain approach.

In - Motion Alignment Method for a Low - cost IMU based GPS/INS System

  • Kim, Jeong-Won;Oh, Snag-Heon;Hwang, Dong-Hwan
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.990-994
    • /
    • 2003
  • When the low cost IMU is used, the result of the stationary self alignment is not suitable for navigation. In this paper, an in-motion alignment method is proposed to obtain an accurate initial attitude of a low cost IMU based GPS/INS integration system. To design Kalman filter for alignment, large heading error model is introduced. And then Kalman filter is designed to estimate initial attitude error as the indirect feedback filter. In order to assess performance of the alignment method, computer simulations are carried out. The simulation results show that initial attitude error rapidly reduces.

  • PDF

Accuracy and Reliability of The Spine-Pelvis Monitor to Record Three-Dimensional Characteristics of The Spine-Pelvic Motion

  • Kim, Jung-Yong;Yoon, Kyung-Chae;Min, Seung-Nam;Yoon, Sang-Young
    • Journal of the Ergonomics Society of Korea
    • /
    • v.31 no.2
    • /
    • pp.345-352
    • /
    • 2012
  • Objective: The aim of this study is to evaluate the accuracy and reliability of Spine-Pelvis Monitor(SPM) that was developed to measure 3-dimensional motion of spine and pelvis using tilt sensor and gyro sensor. Background: The main cause of low back pain is very much associated with the task using the low back and pelvis, but no measurement technique can quantify the both spine and pelvis. Method: For testing the SPM, 125 angles from three anatomical planes were measured three times in order to evaluate the accuracy and reliability. The accuracy of SPM in measuring dynamic motion was evaluated using digital motion analysis system. The motion pattern captured by two measuring methods was compared with each other. In result, the percentage error and Cronbach coefficient alpha were calculated to evaluate the accuracy and reliability. Results: The percentage error was 0.35% in flexion-extension on sagittal plane, 0.43% in lateral bending on coronal plane, and 0.40% in twisting on transverse plane. The Cronbach coefficient alpha was 1.00, 0.99 and 0.99 in sagittal, coronal and transvers plane, respectively. Conclusion: The SPM showed less than 1% error for static measurement, and showed reasonably similar pattern with the digital motion system. Application: The results of this study showed that the SPM can be the measuring method of spine pelvis motion that enhances the kinematic analysis of low back dynamics.

An Investigation in the Thermal Effect on a Low Earth Orbit Satellite under Yaw Motion for the Visibility of a Star Sensor (저궤도 위성에서 별센서의 가시성을 위한 Yaw Motion에 따른 열적 영향 고찰)

  • Kim, Hui-Kyung;Lee, Jang-Joon;Hyun, Bum-Seok
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.7
    • /
    • pp.709-716
    • /
    • 2009
  • Thermal condition according to the operation attitude of a satellite in orbit would be essential to be known because the orbit attitude is a dominant factor to affect satellite thermal design. In this paper, the change in space thermal environment and the thermal effect in thermal design are studied for a low earth orbit satellite according to the yaw motion. The present satellite retains sun-pointing attitude during daylight due to the fixed type solar arrays. And it also moves along the orbit with constant yaw motion in a longitudinal axis so that a star tracker which is a star sensor for satellite's attitude control always looks into the deep space. This attitude is considered in its better visibility to the stars for a successful mission operation. Also, it is required to access the corresponding thermal effects due to the yaw motion. Therefore, we try to verify these by the thermal analysis for the satellite thermal model with the yaw motion.

Effect of low frequency motion on the performance of a dynamic manual tracking task

  • Burton, Melissa D.;Kwok, Kenny C.S.;Hitchcock, Peter A.
    • Wind and Structures
    • /
    • v.14 no.6
    • /
    • pp.517-536
    • /
    • 2011
  • The assessment of wind-induced motion plays an important role in the development and design of the majority of today's structures that push the limits of engineering knowledge. A vital part of the design is the prediction of wind-induced tall building motion and the assessment of its effects on occupant comfort. Little of the research that has led to the development of the various international standards for occupant comfort criteria have considered the effects of the low-frequency motion on task performance and interference with building occupants' daily activities. It has only recently become more widely recognized that it is no longer reasonable to assume that the level of motion that a tall building undergoes in a windstorm will fall below an occupants' level of perception and little is known about how this motion perception could also impact on task performance. Experimental research was conducted to evaluate the performance of individuals engaged in a manual tracking task while subjected to low level vibration in the frequency range of 0.125 Hz-0.50 Hz. The investigations were carried out under narrow-band random vibration with accelerations ranging from 2 milli-g to 30 milli-g (where 1 milli-g = 0.0098 $m/s^2$) and included a control condition. The frequencies and accelerations simulated are representative of the level of motion expected to occur in a tall building (heights in the range of 100 m -350 m) once every few months to once every few years. Performance of the test subjects with and without vibration was determined for 15 separate test conditions and evaluated in terms of time taken to complete a task and accuracy per trial. Overall, the performance under the vibration conditions did not vary significantly from that of the control condition, nor was there a statistically significant degradation or improvement trend in performance ability as a function of increasing frequency or acceleration.

Immediate Effects of Low-Dye Taping on the Ankle Motion and Ground Reaction Forces in the Pronated Rear-Foot During Gait

  • Kim, Sung-shin;Chung, Jae-yeop
    • Physical Therapy Korea
    • /
    • v.23 no.1
    • /
    • pp.72-79
    • /
    • 2016
  • Background: Increased foot pronation causes biomedchanical changes at the lower limbs, which may result in musculoskeletal injuries at the proximal joints. Pronation rear-foot leads to plantar fasciitis, Achilles tendonitis, and posterior tibial tendonitis pathologically. According to the recent meta-analysis, They showed that therapeutic adhesive taping is more effective than foot orthoses and motion control footwear, low-Dye (LD) taping has become the most popular method used by physiotherapists. Objects: The purpose of this study was to determine the immediate effects of LD taping results in different ankle motion and ground reaction force (GRF) as before and after applied LD taping on pronated rear-foot during gait. Methods: Twenty-four participants were recruited for this study. The gait data were recorded using an 8-camera motion capture system and two force platforms. At first, the experiments were carried out that participants walked barefoot without LD taping. And then they walked both feet was applied LD taping. Results: The ankle inversion minimum was significantly greater after LD taping than before LD taping (p=.04); however, in the GRF, there were no significant differences in the inversion maximum or total motion of the stance phase (p=.33, p=.07), or in the vertical (p=.33), posterior (p=.22), and lateral (p=.14) peak forces. Conclusion: The application of taping to pronation rear-foot assists in increased ankle inversion.