• Title/Summary/Keyword: low loading

Search Result 1,572, Processing Time 0.021 seconds

Scintigraphic Evaluation of Alveolar Bone Following Dental Implantation in Dogs (개에서 치아 임플란트 식립후 치조골의 신티그라피 평가)

  • Kim, Joong-hyun;Lee, Jae-yeong;Kim, Myoung-hwan;Lee, Won-guk;Kang, Seong-soo;Choi, Seok-hwa
    • Korean Journal of Veterinary Research
    • /
    • v.43 no.2
    • /
    • pp.289-294
    • /
    • 2003
  • This study aimed to determine of osseointegration following dental implantation in the dog mandible using bone scintigraphy. Five mongrel dogs, weighing approximately 8.5 kg and averaging 1.8 years of age, without active periodontal disease were used. During the entire study period, all dogs were fed a soft commercial diet and water ad libitum to minimize functional loading of the implant. Titanium alloy implant systems 10 mm in length and 4 mm in diameter were chosen for insertion. Twelve weeks prior to implantation, the second and third left mandibular premolars in each dog were extracted for the dental implant insertion. Before the dental implantation procedures and 0, 4, 8, and 12 weeks after the insertions, clinical observation, radiography and bone scintigraphy were conducted. The scintigraphy was obtained using a large field of view gamma camera equipped with a paralled-hole, low-energy collimator about 3 hours after intravenous injection of Tc-99m-MDP (8 mCi/dog) to the dogs. There were not inflammation sign after insertion of dental implants on the mandible in dogs. Implants were slightly movable at the first and fourth weeks, and there was no mobility after 8 weeks. Twelve weeks after dental implantation, the bone uptake scintigraphy of peri-implant bone was similar to that of normal alveolar bone, indicating that peri-implant bone was completely regenerated by new bone. In conclusion, we recommend stable implant fixation with alveolar bone for the accurate and safe repair of teeth loot due to decacy, trauma or peridontal disease. Titanium alloy implants were optimal due to their biocompatibility.

A Suggestion of Mix, Construction Method and Quality Control Criteria of Fine-size Exposed Aggregate PCC Pavement by Experimental Construction (시험시공을 통한 소입경 골재노출 콘크리트 포장의 배합, 시공 및 품질관리 기준 제안)

  • Lee, Seung-Woo;Kim, Young-Kyu;Choi, Don-Hwa;Shim, Jae-Won;Yoo, Tae-Seok
    • International Journal of Highway Engineering
    • /
    • v.13 no.3
    • /
    • pp.51-63
    • /
    • 2011
  • Surface of fine-size exposed aggregate portland cement concrete pavements(FS-EAPCC) is consist by exposed coarse aggregate to remove upper 2~3mm mortar of concrete slabs. Advantages of FS-EAPCC are maintaining low-noise and adequate skid-resistance level during the performance period. However, FS-EAPCC is required rational management criteria for field application, since it is early stage for application. Design construction and quality control criteria of FS-EAPCC was temporary laboratory tests which including optimum mix and exposing method, selection of adequate aggregate, resistance against, environmental loading and etc. However, these criteria need to be validated base on field application. In this study, experimental constructions were performed and construction procedure and quality control criteria were suggested based on the performance of the FS-EAPCC.

Study on the Effects of BaTiO$_3$ Particle Size on Dielectric Constant and Leakage Current of Epoxy/BaTiO$_3$ Composite Films for Embedded Capacitors (BaTiO$_3$ 분말의 입자 크기가 내장형 커패시턴용 에폭시/BaTiO$_3$복합체 필름의 유전상수와 누설전류에 미치는 영향에 관한 연구)

  • 조성동;이주연;백경욱
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.9 no.2
    • /
    • pp.11-17
    • /
    • 2002
  • Polymer/ceramic composite is of great interest as a dielectric material for embedded capacitors. This paper is concerned in the effects of $BaTiO_3$ particle size on epoxy/$BaTiO_3$ composite films for embedded capacitors. 6 different size powders smaller than 1 $\mu\textrm{m}$ in diameter and bisphenol-A type epoxy were used for this experiment. Dielectric constant of the epoxy/$BaTiO_3$ composite capacitors increases as the powder size increases at the same powder loading, which is due to the increase of tetragonality of the powders as particle size increases. And leakage current of the capacitors also increases dramatically as the powder size increases. It was explained that this is due to the decrease of the number of $BaTiO_3$epoxy/$BaTiO_3$ potential barriers per unit length and, moreover, the enhancement of potential barrier lowering effects caused by increase of potential drop per one barrier. As a result, there is tradeoff between high dielectric constant and low leakage current in the epoxy/$BaTiO_3$ composite capacitors. So it is important to select proper size $BaTiO_3$ powders in accordance with needs.

  • PDF

Shear Strength of Interface between Natural Aggregate Concrete and Recycled Aggregate Concrete (천연골재 콘크리트와 순환골재 콘크리트 접합면의 전단강도)

  • Moon, Hoon;Choi, Ik-Je;Kim, Ji-Hyun;Chung, Chul-Woo;Kim, Young-Chan
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.8 no.1
    • /
    • pp.26-32
    • /
    • 2020
  • Concrete recycling is becoming mandatory rather selective due to depletion of constructional materials and increase of concrete waste. Studies on recycling concrete are conducted in various point of view for long time. However, standard or guideline of many countries for the application of recycled aggregate concrete(RAC) has restrictions such as low replacement rate of coarse aggregate and no fine aggregate allowed due to inferior material properties of recycled aggregate. This study intends to figure out the feasibility of casting natural aggregate concrete(NAC) and RAC separately in a structural member. In making RAC, replacement rate of coarse aggregate was 50, 100% in RAC and treatment of interface of two concretes is introduced. RAC treatment of recycled aggregate or inclusion of additives was not done as it can increase embodied energy of concrete work. Double-shear test with uniformly distributed loading was adopted to evaluate shear strength at the interface of two concretes. After curing it was hard to distinguish interface of two concretes. Experimental result revealed that specimen with higher replacement rate showed higher shear-to-compressive strength ratio, which is possibly attributed to coarse aggregate size and roughness of sheared section. Further study on the effect of various parameters is required and subsequent research activity is on-going.

Applicability Evaluation of Nitritation with Various Wastewater (다양한 하수를 대상으로 아질산화 반응 적용성 평가)

  • Im, Jiyeol;Gil, Kyungik
    • Journal of Wetlands Research
    • /
    • v.17 no.1
    • /
    • pp.11-18
    • /
    • 2015
  • As the seriousness of water pollution resulted from nitrogen is being magnified, research has been conducted to reduce nitrogen in sewage as well as wastewater. Particularly research on innovative nitrogen removal methods that are based on the reaction of nitritation and are economically feasible and eco-friendly has been receiving attention. However, research on the applicability and efficiency of the methods based on the reaction of nitritation has not been completely done yet. Accordingly, the current study has analyzed the characteristics of sewage flowing into municipal wastewater treatment plants, primary clarifier supernatant, recycled water, and livestock wastewater and also operated a laboratory-level reactor. The result shows that recycled water and livestock wastewater contain higher-concentration nitrogen than other kinds of sewage, so they increase nitrogen loading in the water treatment line. And the result of operating a reactor shows that because of ammonium nitrogen low concentration, sewage and primary clarifier supernatant do not induce the reaction of nitritation. Also, there exist differences in the conditions of retention time inducing the reaction of nitritation by the types of sewage, and this seems to be attributed to organic compound and ammonium nitrogen concentration. Among the kinds of sewage inducing the reaction of nitritation, anaerobic digester supernatant indicates the highest efficiency.

Failure Characteristics of Carbon/BMI Sandwich Composite Joint under Pull-out Loading (풀아웃 하중을 받는 카본/BMI 샌드위치 복합재 체결부 파손특성 연구)

  • Lee, Gyeong-Chan;Choi, Young-Ho;Lee, Kowan-Woo;Sim, Jae-Hoon;Jung, Young-In
    • Composites Research
    • /
    • v.30 no.2
    • /
    • pp.132-137
    • /
    • 2017
  • The purpose of this paper is to investigate failure characteristics of Carbon/BMI-Nomex honeycomb sandwich on design parameters. A total of 6 types sandwich specimens were manufactured according to core height, face thickness and density, and environmental condition were applied to evaluate temperature and humidity effects of one of these specimens. The test results show that the core shear buckling loads was commonly observed in all specimens except for the joint with density of $64kg/m^3$. After core shear buckling, however, the joint carried additional loads over the buckling loads and then finally failed in the upper face and lower face at the same time. In the case of specimen having high stiffness, the maximum failure load was low due to interfacial failure of the upper face and core without initial core shear buckling. The ETW1 and ETW2 conditions, which were carried out to evaluate the environmental condition of the sandwich specimen, show an initial failure mode which was significantly different from RTD condition. Also, the ETW2 condition with increased temperature under the same humidity shows that the core shear buckling load was 18% less than ETW1 condition.

Quantitative Evaluation of Criticality According to the Major Influence of Applied with Burnup Credit on Dual-purpose Metal Cask (국내 금속겸용용기의 연소도 이득효과 적용 시 주요영향인자에 따른 정량적 핵임계 평가)

  • Dho, Ho-seog;Kim, Tae-man;Cho, Chun-Hyung
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.13 no.2
    • /
    • pp.141-154
    • /
    • 2015
  • In general, conventional criticality analysis for spent fuel transport/storage systems have been performed based on the assumption of fresh fuel concerning the potential uncertainties from number density calculations of actinide nuclides and fission products in spent fuel. However, these evaluation methods cause financial losses due to an excessive criticality margin. In order to overcome this disadvantage, many studies have recently been conducted to design and commercialize a transportation and storage cask applied to the Burnup Credit (BUC). This study conducted an assessment to ensure criticality safety for reactor operating parameters, axial burn-up profiles and misload accident conditions, which are the factors that are likely to affect criticality safety when the BUC is applied to the dual-purpose cask under development at the KOrea RADioactive waste agency (KORAD). As a result, it was found that criticality resulting from specific power, changed substantially and relied on conditions of low enrichment and high burn-up. Considering the end effect in the case of high burn-up produced a positive-definite result. In particular, the increment of maximum effective multiplication factors due to misloading was 0.18467, confirming that misload is a factor that must be taken into account when applying the BUC. The results of this study may therefore be utilized as references in developing technologies to apply the BUC to domestic models and operational procedures or preventing any misload accidents during the process of spent fuel loading.

A Study on the Liquid-Liquid Extraction by Use of Hydrophobic Hollow Fiber Module (소수성 중공사 모듈에 의한 액-액 추출에 관한 연구)

  • Kim, Young-II;Park, Dong-Won
    • Applied Chemistry for Engineering
    • /
    • v.7 no.2
    • /
    • pp.237-244
    • /
    • 1996
  • Liquid-liquid extractions by use of microporous hollow fiber modules are fast compared with conventional extraction equipment because of the large surface area per volume. In these modules, the extractant and feed can be contacted at high speed and two flows are completely independent, so there are no problems with loading and channeling. In this paper, it was investigated the extraction selectivities for liquid-liquid extraction of Fe(II) and Ni(II) from dilute aqueous solution into TOA (tri-n-octylamine) and EHPNA (bis(2-ethylhexyle)hydrogenphosphite) as organic extractants by using the hydrophobic hollow fiber module. To determine the rate controlling step for mass transfer in hollow fibers, we also examined the effect of inside and outside flow rates of the hollow fiber module. From these experiments, we identified for the extraction of system with high partition coefficient in hydrophobic hollow fibers, mass transfer in the inside aqueous feed dominated the overall mass transfer, and in this paper, correlation between $K_w$ and $v_t$ was obtained as $K_w{\frac{d}{D}}=6.22\(\frac{d^2v_t}{LD}\)^{1/3}$ On the other hand, for the system with low partition coefficient, the resistance in the inside of hollow fibers was much less than membrane resistance because the extraction was not simple in the micropore. Thus, for systems with high partition coefficients, hydrophobic hollow fibers would be a better choice.

  • PDF

Behaviour of One-Way Concrete Slabs Reinforced with Fiber Reinforced Polymer (FRP) Bars (FRP 보강근을 주근으로 사용한 일방향 콘크리트 슬래브의 거동)

  • Seo, Dae-Won;Han, Byum-Seok;Shin, Sung-Woo
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.6
    • /
    • pp.763-771
    • /
    • 2007
  • Over the last few decades, many researches have been conducted in order to find solution to the problem of corrosion in steel reinforced concrete. As a result, methods such as the use of stainless steel bars, epoxy coatings, and concrete additives, etc., have been tried. While effective in some situations, such remedies may still be unable to completely eliminate the problems of steel corrosion. Fiber reinforced polymer (FRP) elements are appealing as reinforcement due to some material properties such as high tensile strength, low density, and noncorrosive. However, due to the generally lower modulus of elasticity of FRP in comparison with the steel and the linear behavior of FRP, certain aspects of the structural behavior of RC members reinforced with FRP may be substantially different from similar elements reinforced with steel reinforcement. This paper presents the flexural behavior of one-way concrete slabs reinforced with FRP bars. They were simply supported and tested in the laboratory under static loading conditions to investigate their crack pattern and width, deflections, strains and mode of failure. The experimental results shows that behavior of the FRP reinforced slabs was bilinearly elastic until failure. Also, the results show that the FRP overreinforced concrete beams in this study can be safe for design in terms of deformability.

Biosorption Characteristics of Organic Matter in a Sequencing Batch Reactor : Effect of Sludge Retention Time (연속 회분식 반응기내 유기물 생물흡착특성: SRT 영향)

  • Kim, Keum-Yong;Kim, Jin-Hyung;Kim, Dae-Keun;Ryu, Hong-Duck;Lee, Sang-Ill
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.2
    • /
    • pp.175-180
    • /
    • 2008
  • The objective of this study was to investigate biosorption of organic matter on EPS(Extracellular Polymeric Substances) at different SRT(Sludge Retention Time) in a SBR(Sequencing Batch Reactor) process, which was operated with the following operation steps : Fill-React-Settle-Decant-Idle. The hydraulic retention time was set to be 24 hours. The results obtained from this study showed that the organic removal efficiency per unit microbial biomass decreased with increasing SRT, and the corresponding EPS amount also did. The percent removal of organic by biosorption increased with SRT, and it reached to 53.2% at SRT of 30 days. However, the highest biosorption per microbial biomass(48.6 mgCOD/gVSS) was found at SRT of 2 days. The EPS analysis was performed by measuring TSS, TCOD$_{Cr}$, and TKN. The EPS production per unit microbial biomass was observed to be high at a low SRT. Due to the above result, the floc formation was hindered and therefore poor settlement of sludge resulted in decreasing the COD removal efficiency. It was therefore concluded that the consideration of the system design should include the characteristic of EPS as well as other factors such as SRT, MLSS, and organic loading.