• Title/Summary/Keyword: low k passivation

Search Result 125, Processing Time 0.028 seconds

Analysis of the Na Gettering in SiO2/PSG/SiO2/Al-1%Si and SiO2/TEOS/SiO2/Al-1%Si Multilevel Thin Films using SIMS (SIMS를 이용한 SiO2/PSG/SiO2/Al-1%Si 및 SiO2/TEOS/SiO2/Al-1%Si 적층 박막내의 Na 게터링 분석)

  • Kim, Jin Young
    • Journal of the Korean institute of surface engineering
    • /
    • v.51 no.2
    • /
    • pp.110-115
    • /
    • 2018
  • The Na low temperature gettering in $SiO_2/PSG/SiO_2/Al-1%Si$ and $SiO_2/TEOS/SiO_2/Al-1%Si$ multilevel thin films was investigated using dynamic SIMS(secondary ion mass spectrometry) analysis. DC magnetron sputter, APCVD and PECVD techniques were utilized for the deposition of Al-1%Si thin films, $SiO_2/PSG/SiO_2$ and $SiO_2/TEOS/SiO_2$ passivations, respectively. Heat treatment was carried out at $300^{\circ}C$ for 5 h in air. SIMS depth profiling was used to determine the distribution of Na, Al, Si and other elements throughout the $SiO_2/PSG/SiO_2/Al-1%Si$ and $SiO_2/TEOS/SiO_2/Al-1%Si$ multilevel thin films. XPS was used to analyze chemical states of Si and O elements in $SiO_2$ passivation layers. Na peaks were observed throughout the $PSG/SiO_2$ and $TEOS/SiO_2$ passivation layers on the Al-1%Si thin films and especially at the interfaces. Na low temperature gettering in $SiO_2/PSG/SiO_2/Al-1%Si$ and $SiO_2/TEOS/SiO_2/Al-1%Si$ multilevel thin films is considered to be caused by a segregation type of gettering.

Improvement of the permeation properties with a thin hybrid - passivation layer to apply the Large-sized Organic Display Devices

  • Lee, Joo-Won;Bea, Sung-Jin;Park, Jung-Soo;Lee, Young-Hoon;Chin, Byung-Doo;Kim, Jai-Kyeong;Jang, Jin;Ju, Byeong-Kwon
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.1779-1783
    • /
    • 2006
  • The hybrid thin-film (HTF) passivation layer composed of the UV curable acrylate layer and MS-31 (MgO:SiO2=3:1wt%) layer was adopted in organic light emitting diode (OLED) to protect organic light emitting materials from penetrations of oxygen and water vapors. The moisture resistance of the deposited HTF layer was measured by the water vapor transmission rate (WVTR). The results showed that the HTF layer possessed a very low WVTR value of lower than $0.007g/m^2$ per day at $37.8^{\circ}C$ and 100% RH. Therefore, the HTF on the OLED was found to be very effective in protect what from the penetrations of oxygen and moisture.

  • PDF

Study on the dark current reduction of $HgI_2$ radiation detector ($HgI_2$ 방사선 검출기의 누설전류 저감에 관한 연구)

  • Shin, Jung-Wook;Kang, Sang-Sik;Kim, Jin-Young;Kim, Kyung-Jin;Park, Sung-Kwang;Jo, Heung-Lae;Lee, Hyung-Won;Nan, Sang-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.456-459
    • /
    • 2004
  • Analog film/screen systems have been being changed to a digital x-ray imaging device using direct conversion materials. Photocoductors for a direct detection flat-panel imager require high x-ray absorption, ionization and charge collection, low leakage current and large area deposition. In this work, $HgI_2$ films with excellent properties for x-ray detector were deposited by screen printing method. The thickness of $HgI_2$ film was about $150\;{\mu}m$. The passivation layer is fabricated using a-Se and parlyene, the both fabrication $HgI_2$ film were compared for analyzing the leakage current reduction. We measured electrical properties-leakage current, photosensitivity, SNR though I-V measurement, As the result, $HgI_2$ film using a-Se passivation layer had the greater

  • PDF

Study on the Hybrid Passivation layer of OLEDs using the Organic/Inorganic Thin Film (유/무기 복합 박막을 이용한 유기발광 소자의 보호층에 관한 연구)

  • Bae, Sung-Jin;Lee, Joo-Won;Lee, Young-Hoon;Kang, Nam-Soo;Kim, Dong-Young;Hwang, Sung-Woo;Kim, Jai-Kyung;Ju, Byeong-Kwon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.04a
    • /
    • pp.78-80
    • /
    • 2006
  • The hybrid thin-film (HTF) passivation layer composed of the Ultra Violet (UV) curable acrylate layer and MS-31 (MgO:$SiO_2$=3:1wt%) layer was adopted in organic light emitting device (OLEO) to protect organic light emitting materials from penetrations of oxygen and water vapors. The results showed that the HTF layer possessed a very low WVTR value of lower than $0.007gm/m^{2+}day$ at $37.8^{\circ}C$ and 100% RH. This value was within the limited range of the sensitivity of WVTR measurements. And the lifetime of the HTF passivated device became almost three times longer than that of the bare device. The HTF on the OLEO was found to be very effective in protect what from the penetrations of oxygen and moisture.

  • PDF

Al2O3/SiO2/Si(100) interface properties using wet chemical oxidation for solar cell applications

  • Min, Kwan Hong;Shin, Kyoung Cheol;Kang, Min Gu;Lee, Jeong In;Kim, Donghwan;Song, Hee-eun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.418.2-418.2
    • /
    • 2016
  • $Al_2O_3$ passivation layer has excellent passivation properties at p-type Si surface. This $Al_2O_3$ layer forms thin $SiO_2$ layer at the interface. There were some studies about inserting thermal oxidation process to replace naturally grown oxide during $Al_2O_3$ deposition. They showed improving passivation properties. However, thermal oxidation process has disadvantage of expensive equipment and difficult control of thin layer formation. Wet chemical oxidation has advantages of low cost and easy thin oxide formation. In this study, $Al_2O_3$/$SiO_2/Si(100)$ interface was formed by wet chemical oxidation and PA-ALD process. $SiO_2$ layer at Si wafer was formed by $HCl/H_2O_2$, $H_2SO_4/H_2O_2$ and $HNO_3$, respectively. 20nm $Al_2O_3$ layer on $SiO_2/Si$ was deposited by PA-ALD. This $Al_2O_3/SiO_2/Si(100)$ interface were characterized by capacitance-voltage characteristics and quasi-steady-state photoconductance decay method.

  • PDF

Polishing Characteristics of passivation layer by abrasive particles and slurry chemical in the Metal CMP process (금속 CMP 공정에서 연마제와 슬러리 케미컬에 의한 passivation layer의 연마특성)

  • Park, Chang-Jun;Seo, Yong-Jin;Lee, Kyoung-Jin;Jeong, So-Young;Kim, Sang-Yong;Lee, Woo-Sun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.05c
    • /
    • pp.45-48
    • /
    • 2003
  • The polishing mechanism of W-CMP process has been reported as the repeated process of passive layer formation by oxidizer and abrasion action by slurry abrasives. Thus, it is important to understand the effect of oxidizer on tungsten passivation layer in order to obtain higher removal rate (RR) and very low non-uniformity (NU%) during W-CMP process. In this paper, we investigated the effects of oxidizer on W-CMP process with three different kinds of oxidizers, such as $H_2O_2$, $Fe(NO_3)_3$, and $KIO_3$. In order to compare the removal rate and non-uniformity of three oxidizers, we used alumina-based slurry of pH 4. According to the CMP tests, three oxidizers showed different removal mechanism on tungsten surface. Also, the microstructures of surface layer by AFM image were greatly influenced by the slurry chemical, composition of oxidizers. The difference in removal rate and roughness of tungsten surface are believed to caused by modification in the mechanical behavior of $Al_2O_3$ abrasive particles in CMP slurry. Our stabilized slurries can be used a guideline and promising method for improved W-CMP process.

  • PDF

A Study on the Electrochemical Reaction of Metal at Electrolyte (전해액에서 금속막의 전기화학적 반응 고찰)

  • Lee, Young-Kyun;Park, Sung-Woo;Han, Sang-Jun;Lee, Sung-Il;Choi, Gwon-Woo;Lee, Woo-Sun;Seo, Yong-Jin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.88-88
    • /
    • 2007
  • Chemical mechanical polishing (CMP) 공정은 그 어원에서 알 수 있듯이 슬러리의 화학적인 요소와 웨이퍼에 가해지는 기계적 압력에 의해 결정되는 평탄화 기술이다. 최근, 금속배선공정에서 높은 전도율과 재료의 값이 싸다는 이유로 Cu률 사용하였으나, 디바이스의 구조적 특성을 유지하기 위해 높은 압력으로 인한 새로운 다공성 막(low-k)의 파괴와, 디싱과 에로젼 현상으로 인한 문제점이 발생하게 되었다. 이러한 문제점을 해결하고자, 본 논문에서는 Cu 표면에 Passivation layer를 형성 및 제거하는 개념으로 공정시 연마제를 사용하지 않으며, 낮은 압력조건에서 공정을 수행하기 위해, 전해질의 농도 변화에 따른 선형추의전압전류법과 순환전압전류법을 사용하여 전압활성화에 의한 전기화학적 반응이 어떤 영향을 미치는지 연구하였다.

  • PDF

Temperature Dependence of Resistivity in As Implanted LPCVD Polycrystalline Silicon Films (LPCVD로 제조된 다결정실리콘에 As를 주입한 시료의 비저항에 대한 온도의존성 연구)

  • Ha, Hyoung-Chan;Kim, Chung-Tae;Ko, Chul-Gi;Chun, Hui-Gon;Oh, Kye-Hwan
    • Korean Journal of Materials Research
    • /
    • v.1 no.1
    • /
    • pp.23-28
    • /
    • 1991
  • The resistivity of polycrystalline silicon film deposited by low pressure chemical vapor deposition and doped by arsenic Implantation has been investigated as a function of dopant concentration and testing temperature ranging from $25^{\circ}C$ to $105^{\circ}C$ . The resistivity vs. doping concentration curve had a peak point with highest activation energy with respect to the dependence of the resistivity on temperature. We showed that $O_2$ plasma anneal followed by heat-treatment in $N_2$ ambient was able to recover the resistivity degraded by the plasma deposited passivation layers.

  • PDF

High-Voltage AlGaN/GaN High-Electron-Mobility Transistors Using Thermal Oxidation for NiOx Passivation

  • Kim, Minki;Seok, Ogyun;Han, Min-Koo;Ha, Min-Woo
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.5
    • /
    • pp.1157-1162
    • /
    • 2013
  • We proposed AlGaN/GaN high-electron-mobility transistors (HEMTs) using thermal oxidation for NiOx passivation. Auger electron spectroscopy, secondary ion mass spectroscopy, and pulsed I-V were used to study oxidation features. The oxidation process diffused Ni and O into the AlGaN barrier and formed NiOx on the surface. The breakdown voltage of the proposed device was 1520 V while that of the conventional device was 300 V. The gate leakage current of the proposed device was 3.5 ${\mu}A/mm$ and that of the conventional device was 1116.7 ${\mu}A/mm$. The conventional device exhibited similar current in the gate-and-drain-pulsed I-V and its drain-pulsed counterpart. The gate-and-drain-pulsed current of the proposed device was about 56 % of the drain-pulsed current. This indicated that the oxidation process may form deep states having a low emission current, which then suppresses the leakage current. Our results suggest that the proposed process is suitable for achieving high breakdown voltages in the GaN-based devices.

Local Back Contact Formed by Screen Printing and Atomic Layer Deposited Al2O3 for Silicon Solar Cell

  • Jo, Yeong-Jun;Jang, Hyo-Sik
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.687-687
    • /
    • 2013
  • In rearpoint contact solar cell and the PERC (passivated emitter rear contact) type cell, surfaces were passivated by SiO2 or Al2O3 to increase solar cell efficiency. Therefore, we have investigated the effect of surface passivation for crystalline silicon solarcell using mass-production atomic layer deposited (ALD) Al2O3. The patttern which consists of cylinders with 100um diameter and 5um height was formed by PR patterning on Si (100) substrate and then Al2O3 of about 10nm and 20nm thickness was deposited by ALD. The pattern in 10 nm Al2O3 film was removed by dipping in aceton solution for about 10 min but the pattern in 20 nm Al2O3 film was not. The influences of process temperature and heat treatment were investigated using microwave photoconductance decay (PCD) and Quasi-Steady-State photoconductance (QSSPC). The solar cell process used in this work combines the advantage of using the applicability of a selective deposition associated with a ALD passivation and the use of low-cost screen print for the contacts formation.

  • PDF