DOI QR코드

DOI QR Code

Analysis of the Na Gettering in SiO2/PSG/SiO2/Al-1%Si and SiO2/TEOS/SiO2/Al-1%Si Multilevel Thin Films using SIMS

SIMS를 이용한 SiO2/PSG/SiO2/Al-1%Si 및 SiO2/TEOS/SiO2/Al-1%Si 적층 박막내의 Na 게터링 분석

  • Kim, Jin Young (Department of Electronic Materials Engineering, Kwangwoon University)
  • 김진영 (광운대학교 전자재료공학과)
  • Received : 2018.03.09
  • Accepted : 2018.04.02
  • Published : 2018.04.30

Abstract

The Na low temperature gettering in $SiO_2/PSG/SiO_2/Al-1%Si$ and $SiO_2/TEOS/SiO_2/Al-1%Si$ multilevel thin films was investigated using dynamic SIMS(secondary ion mass spectrometry) analysis. DC magnetron sputter, APCVD and PECVD techniques were utilized for the deposition of Al-1%Si thin films, $SiO_2/PSG/SiO_2$ and $SiO_2/TEOS/SiO_2$ passivations, respectively. Heat treatment was carried out at $300^{\circ}C$ for 5 h in air. SIMS depth profiling was used to determine the distribution of Na, Al, Si and other elements throughout the $SiO_2/PSG/SiO_2/Al-1%Si$ and $SiO_2/TEOS/SiO_2/Al-1%Si$ multilevel thin films. XPS was used to analyze chemical states of Si and O elements in $SiO_2$ passivation layers. Na peaks were observed throughout the $PSG/SiO_2$ and $TEOS/SiO_2$ passivation layers on the Al-1%Si thin films and especially at the interfaces. Na low temperature gettering in $SiO_2/PSG/SiO_2/Al-1%Si$ and $SiO_2/TEOS/SiO_2/Al-1%Si$ multilevel thin films is considered to be caused by a segregation type of gettering.

Keywords

References

  1. G. Kissinger, D. Kot, M. Klingsporn, M. Schubert, A. Sattler, and T. Muller, Investigation of the copper gettering mechanism of oxide precipitates in silicon, ESC J. Solid State Sci. and Technol., 4 (2015) N124-N129. https://doi.org/10.1149/2.0151509jss
  2. M. Al-Amin and J. D. Murphy, Increasing minority carrier lifetime in as-grown multicrystalline silicon by low temperature internal gettering, J. Appl. Phys. 119 (2016) 235704. https://doi.org/10.1063/1.4954010
  3. M. Al-Amin and J. D. Murphy, Passivation effects on low-temperature gettering in multicrystalline silicon, IEEE J. Photovoltaics, 7 (2017) 68-77. https://doi.org/10.1109/JPHOTOV.2016.2618608
  4. M. Al-Amin and J. D. Murphy, Combining lowtemperature gettering with phosphorous diffusion gettering for improved multicrystalline silicon, IEEE J. Photovoltaics, 7 (2017) 1519-1527. https://doi.org/10.1109/JPHOTOV.2017.2741100
  5. H. Zhu, X. Yu, X. Zhu, Y. Wu, J. He, J. Vanhellemont, D. Yang, Low temperature iron gettering by grown-in defects in p-type Czochralski silicon, Superlattices and Microstructures 99 (2016) 192-196. https://doi.org/10.1016/j.spmi.2016.03.006
  6. K. S. Choe, Silicon intrinsic gettering technology: understanding and practice, J. Kor. Mater. Res., 14 (2004) 9-12. https://doi.org/10.3740/MRSK.2004.14.1.009
  7. M. H. Lee, Thin Film Technology, Dooyangsa, Seoul (2009) 188.
  8. C. Hang, Y Tian, C. Wang, N. Wang, Ultrasonic bondability and antioxidation property of Ti/Cu/TaN/Ag multi-layers on Si substrate, Thin Solid Films, 524
  9. J. Walls, VG Ionex, Methods of Surface Analysis, Cambridge University Press, Cambridge (1987) 36-40.
  10. J. F. O'Hanlon, A User's Guide to Vacuum Technology, 2nd ed., John Wiley & Sons, Inc., New York (1989) 454.
  11. C. D. Wagner, W. M. Riggs, L. E. Davis, and J. F. Moulder, Handbook of X-ray Photoelectron Spectroscopy, G. E. Muilenberg, Perkin-Elmer Corp., Minnesota (1978) 52.