• Title/Summary/Keyword: low frequency inverter

Search Result 397, Processing Time 0.026 seconds

Analysis of Voltage Delay and Compensation for Current Control in H-Bridge Multi-Level Inverter (H-브릿지 멀티레벨 인버터의 전압 지연 해석 및 전류 제어 보상)

  • Park, Young-Min;Ryu, Han-Seong;Lee, Hyun-Won;Jung, Myung-Gil;Lee, Se-Hyun
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.15 no.1
    • /
    • pp.43-51
    • /
    • 2010
  • This paper proposes an analysis of voltage delay and compensation for current control in H-Bridge Multi-Level (HBML) inverters for a medium voltage motor drive with vector control. It is shown that the expansion and modularization capability of the HBML inverter is improved in case of using Phase-Shifted Pulse Width Modulation (PSPWM) since individual inverter modules operate more independently. But, the PSPWM of HBML has a phase difference between reference voltage and real voltage, which can cause instability in the current regulator at high speed where the ratio of the sampling frequency to the output frequency is insufficient. This instability of the current regulator is removed by adding a proposed method which compensate a phase difference between reference voltage and real voltage. The proposed method is suitable for HBML inverter controlled by PSPWM with low switching frequency and high speed motor drive. The validity of the proposed method is verified experimentally on 6,600[V] 1,400[kW] induction motor fed by an 13-level HBML inverter.

Improved Charge Pump Power Factor Correction Electronic Ballast Based on Class DE Inverter

  • Thongkullaphat, Sarayoot
    • International journal of advanced smart convergence
    • /
    • v.4 no.1
    • /
    • pp.64-70
    • /
    • 2015
  • This paper proposes fluorescent electronic ballast with high power factor and low line input current harmonics. The system performance can be improved by a charged pump circuit. Details of design and circuit operation are described. The proposed electronic ballast is modified from single-stage half bridge class D electronic ballast by adding capacitor parallel with each power switch and setting the circuit parameter to operate under class DE inverter condition. By using this proposed method the DC bus voltage can be reduced around by 50% compare with conventional class D inverter circuit. Because the power switches are operated at zero voltage switching condition and low dv/dt of class DE switching. The experimental results show that the proper frequency of the prototype is around 50 kHz with input power factor of 0.982, $THD_i$ 10.2% at full load and efficiency of more than 90%.

Active Front End Inverter with Quasi - resonance

  • Siebel, Henrik;Pacas, J.M.
    • Journal of Power Electronics
    • /
    • v.3 no.1
    • /
    • pp.17-23
    • /
    • 2003
  • A new three-phase soft-switching active front-end inverter is presented. The topology consists of a quasi-resonant PWM boost converter with an additional resonant branch, which provides low loss at high frequency operation. This leads to a high conversion efficiency and a remarkable reduction in the siBe of the input inductor. To synchronise the PWM pattern with the resonance cycle, a modified space vector modulation with asymmetrical PWM pattern is used. A high power factor can be achieved for both power flow directions. Due to a new control strategy the converter features a low content of harmonics in the line currents even for distorted line voltages.

Active front end inverter with quasi - resonance

  • Siebel H.;Pacas J. M.
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.146-150
    • /
    • 2001
  • A new three-phase soft-switching active front-end inverter is presented. The topology consists of a quasi-resonant PWM boost converter with an additional resonant branch, which provides low loss at high frequency operation. This leads to a high conversion efficiency and a remarkable reduction in the size of the input inductor. To synchronise the PWM pattern with the resonance cycle, a modified space vector modulation with asymmetrical PWM pattern is used. A high power factor can be achieved for both power flow directions. Due to a new control strategy the converter features a low content of harmonics in the line currents even for distorted line voltages.

  • PDF

Output Filler Design for Noise Reduction of Induction Motor Drive System using H-Bridge 7-Level Inverters (H-Bridge 7레벨 인버터를 이용한 유도전동기 구동시스템의 노이즈 저감을 위한 출력 필터설계)

  • Kim, Soo-Hong;Ahn, Young-Oh;Kim, Yoon-Ho;Bang, Sang-Seok;Kim, Kwang-Seob
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.20 no.3
    • /
    • pp.36-44
    • /
    • 2006
  • In general, the generated harmonics and noise of the PWM inverter are affected by PWM switching method, switching frequency, dv/dt and di/dt. Since multilevel inverters are often applied to the high power system, and operates with low switching frequency, theyproduce large size of harmonic contents and noise. Thus it is necessary to install output filters in the multilevel inverter. In this paper a filter design approach for the harmonic and noise reduction the three phase induction motor driving system using H-bridge 7-level inverter system is presented. The passive filter that has low cost and simple structure and can effectively reduce harmonics and noise, is designed and applied to the three phase induction motor drive having multilevel inverter system. The designed system is implemented and verified by simulation and experiments.

PWAM Based THD Reduction of Inverter for Air-Conditioning Blower (PWAM 방식을 이용한 공조시스템용 인버터의 THD 저감 방법)

  • Lim, Seung-Beom;Lee, Yun-Ha;Zun, Chan-Yong
    • Proceedings of the KIPE Conference
    • /
    • 2011.07a
    • /
    • pp.97-98
    • /
    • 2011
  • The HVAC(Heating Ventilation and Air conditioning) system is controlled by two ways, one is ON/OFF control and the other is PWM inverter with V/F. Control of blower with the use of PWM inverter has quite some benefits such as the capability of changing speed, high efficiency and reduced noise level compared with ON/OFF control. But if blower is operated at low speed, high THD generated by decrease of ma, and output voltage lowered in proportion to frequency. To solve these problems, filter should be installed at the output stage of inverter, which can decrease THD but has problems such as increase of volume size and additional braking resistance. This paper proposes the PWAM method which can reduce THD instead of installing the filter at the output stage of inverter. The proposed PWAM method is an inverter modulation method that fixes the modulation index of inverter to reduce THD by varying DC link voltage of inverter unlike conventional PWM method. Finally, the validity of proposed PWAM methods verified by experiments.

  • PDF

Development of Electronic Ballast Driving with Low Frequency Square Wave for MHD Lamps (구형 저주파 구동 MHD 램프용 전자식 안정기 개발)

  • Park, Chong-Yeun;Kim, Gi-Jung
    • Proceedings of the KIEE Conference
    • /
    • 1999.07f
    • /
    • pp.2562-2564
    • /
    • 1999
  • We have development the electronic ballast for metal halide discharge (MHD) lamp. The ballast consists of the boost pre-converter for power factor correction (PFC), a flyback a converter, half-bridge inverter and ignitor. To reject acoustic resonance phenomena, we have designed electronic ballast driving with the low frequency square wave. As results of this study, the ballast had not flicker phenomena and promoted corrected the factor (PF) highly

  • PDF

High Efficiency Control Strategy of TNPC Inverter Using Low-frequency Switching Method of Neutral Point Switch (중성점 스위치의 저주파 스위칭 기법을 이용한 TNPC 인버터의 효율 향상 기법)

  • Lee, Taeyeong;Cho, Younghoon;Lim, Seungbeom
    • Proceedings of the KIPE Conference
    • /
    • 2015.07a
    • /
    • pp.329-330
    • /
    • 2015
  • This paper introduces a low-frequency switching method for the neutral line of TNPC inverters to achieve high efficiency. By applying the method, the switching loss in the neutral line is reduced. In order to compensate the current distortion near zero-crossing points, the partial switching strategy is applied. Both the simulation and the experimental results verify the usefulness of the proposed method.

  • PDF

Low Frequency Current Ripple Mitigation of Two Stage Three-Phase PEMFC Generation Systems

  • Deng, Huiwen;Li, Qi;Liu, Zhixiang;Li, Lun;Chen, Weirong
    • Journal of Power Electronics
    • /
    • v.16 no.6
    • /
    • pp.2243-2257
    • /
    • 2016
  • This paper presents a two stage three-phase proton exchange membrane fuel cell (PEMFC) generation system. When the system is connected to a three-phase load, it is very sensitive to the characteristics and type of the load. Especially unbalanced three-phase loads, which result in a pulsating power that is twice the output frequency at the inverter output, and cause the dc-link to generate low frequency ripples. This penetrates to the fuel cell side through the front-end dc-dc converter, which makes the fuel cell work in an unsafe condition and degrades its lifespan. In this paper, the generation and propagation mechanism of low frequency ripple is analyzed and its impact on fuel cells is presented based on the PEMFC output characteristics model. Then a novel method to evaluate low frequency current ripple control capability is investigated. Moreover, a control scheme with bandpass filter inserted into the current feed-forward path, and ripple duty ratio compensation based on current mode control with notch filter is also proposed to achieve low frequency ripple suppression and dynamic characteristics improvement during load transients. Finally, different control methods are verified and compared by simulation and experimental results.

A Capacitor-Charging Power Supply Using a Series-Resonant Three-Level Inverter Topology

  • Song I. H.;Shin H. S.;Choi C. H.
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.301-303
    • /
    • 2001
  • In this paper we present a Capacitor Charging Power Supply (CCPS) using a series-resonant three-level inverter topology to improve voltage regulation and use semiconductor switches having low blocking voltage capability such as MOSFETs. This inverter can be operated with two modes, Full Power Mode (FPM) and Half Power Mode (HPM). In FPM inverter supplies the high frequency step up transformer with full DC-link voltage and in HPM with half DC-link voltage. HPM switching method will be adopted when CCPS output voltage reaches the preset target value and operates in refresh mode-charge is maintained on the capacitor. In this topology each semiconductor devices blocks a half of the DC-link voltage[2]. A 15kW, 30kV CCPS has been built and will be tested for an electric precipitator application. The CCPS operates from an input voltage of 500VDC and has a variable output voltage between 10 to 30kV and 1kHz repetition rate at 44nF capacitive load [3]. A resonant frequency of 67.9kHz was selected and a voltage regulation of $0.83\%$ has been achieved through the use of half power mode without using the forced cut off the switch current [1]. The theory of operation, circuit topology and test results are given.

  • PDF