• Title/Summary/Keyword: low energy consumption

Search Result 1,402, Processing Time 0.036 seconds

Energy efficiency improvements in part load for a marine auxiliary diesel engine (선박발전기용 디젤엔진의 부분부하에서 에너지 효율 개선에 관한연구)

  • Jung, Kyun-Sik
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.7
    • /
    • pp.877-882
    • /
    • 2014
  • The reduction of CO2 emission has been discussed in the Marine Environment Protection committee in the International Maritime Organization as the biggest causes of GHG for the purpose of indexing CO2 amounts released into the atmosphere from ships. Accordingly, various methods including the change in the hull design to improve energy efficiency, the coating development to reduce friction resistances, the additives development for improving thermal efficiency in an engine, the low-speed operation to reduce fuel consumptions, and etc. have been applied. The main engine of a ship is an electronic engine for improving the efficiency of the whole load area. However, marine generator engines still use mechanical drive engines in intake, exhaust, and fuel injection valve drive cams. In addition, most of marine generator engines in ships apply a part-load operation of less then 80% due to an overload protection system. Therefore, marine auxiliary diesel engine set at 100% load is necessary to readjust in order to efficient operation because of part-load operation. The objective of this study is to report the results of the part-load fuel consumption improvement by injection timing readjust to identifying the operational characteristics of a marine generator engine currently operated in a ship.

A Study on the Fatigue Characteristics and Life Prediction of the Tire Sidewall Rubber (타이어 사이드월 고무의 피로특성 및 수명예측에 관한 연구)

  • Moon, Byungwoo;Kim, Yongseok;Jun, Namgyu;Koo, Jae-Mean;Seok, Chang-Sung;Hong, Ui Seok;Oh, Min Kyeong;Kim, Seong Rae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.7
    • /
    • pp.629-634
    • /
    • 2017
  • In the case of the UHP (Ultra high performance) tire that the demand has increased rapidly, compared with the commonly used tire, severe deformation has been observed because of the low aspect ratio. When repeated deformations are applied to the sidewall rubber, accumulated fatigue damage may cause fatigue failure. Thus, the evaluation of the durability of the tire sidewall rubber has become a very important issue to prevent accidents that occur while the vehicle is running. However, the research and design criteria for the durability performance of the tire sidewall rubber hardly exist. In this study, we suggest a lifetime prediction formula using strain energy density obtained by performing tensile tests and fatigue tests on two different kinds of the tire sidewall compounds. Additionally, the applicability of our findings for low fuel consumption tires was reviewed by converting the fatigue life of the sidewall rubber into the expected mileage of the tire.

Implementation of Multi-Core Processor for Beamforming Algorithm of Mobile Ultrasound Image Signals (모바일 초음파 영상신호의 빔포밍 알고리즘을 위한 멀티코어 프로세서 구현)

  • Choi, Byong-Kook;Kim, Jong-Myon
    • The KIPS Transactions:PartA
    • /
    • v.18A no.2
    • /
    • pp.45-52
    • /
    • 2011
  • In the past, a patient went to the room where an ultrasound image diagnosis device was set, and then he or she was examined by a doctor. However, currently a doctor can go and examine the patient with a handheld ultrasound device who stays in a room. However, it was implemented with only fundamental functions, and can not meet the high performance required by the focusing algorithm of ultrasound beam which determines the quality of ultrasound image. In addition, low energy consumption was satisfied for the mobile ultrasound device. To satisfy these requirements, this paper proposes a high-performance and low-power single instruction, multiple data (SIMD) based multi-core processor that supports a representative beamforming algorithm out of several focusing methods of mobile ultrasound image signals. The proposed SIMD multi-core processor, which consists of 16 processing elements (PEs), satisfies the high-performance required by the beamforming algorithm by exploiting considerable data-level parallelism inherent in the echo image data of ultrasound. Experimental results showed that the proposed multi-core processor outperforms a commercial high-performance processor, TI DSP C6416, in terms of execution time (15.8 times better), energy efficiency (6.9 times better), and area efficiency (10 times better).

Reaction Force Analysis on the Journal Bearing of Shafting System with Contra-Rotating Propeller (상반회전 프로펠러 축계 저널 베어링 반력해석)

  • Shin, Sang-Hoon;Lee, Seung-Min
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.10
    • /
    • pp.270-276
    • /
    • 2019
  • According to the International Maritime Organization (IMO) 2020 Regulation, ships operating outside designated emission control areas (ECA) have to use low-sulfur oil with a sulfur content of 0.5% or less by January 2020. To minimize the consumption of high-priced low-sulfur oil, it is urgent to introduce efficient energy-saving devices (ESD), and contra-rotating propeller (CRP) systems are well known to be the most effective one. The shafting system that drives a CRP is composed of an inner shaft and an outer one and has a mutually influential system that is much more complex and heavier than a general shafting system. An initial design was carried out to install a CRP system for the first time in Korea. The purpose of this study is to verify whether the journal bearing meets the classification's design criteria through a bearing reaction force analysis for the classification's approval of the initial design. It is ideal for the thrust of the propeller to act on the center of the shaft, but thrust eccentricity occurs due to the uneven wake caused by the stern shape. Load conditions were applied while considering thrust eccentricity to perform the shaft analysis, and the results were compared with the classification's criteria.

A Feasibility Study on Thermal Energy Resource in Deep Ocean Water (해양심층수 에너지자원 이용 타당성 분석 연구)

  • Kim, Jeong-Hyop;Kim, Gwang-Tae;Park, Se-Hun;Oh, Wee-Yeong;Kim, Hyeon-Ju
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.15 no.1
    • /
    • pp.9-18
    • /
    • 2012
  • Annual power consumption of our country is positioned in the upper percentile in the world, and because the proportion of fossil power generation is high, which ranks the 10th $CO_2$ emission country. In this regard, government has established and is implementing the National Energy Basic Plan to realize to get out of fossilization in energy supply while focusing on securing the technology for renewable energy as well as its commercialization in order to reduce greenhouse gas. Resource recovery technology for deep seawater thermal energy which is one of renewable energies is newly getting attention domestically as well as in overseas for securing resources and environmental improvement as a core technology for multilateral use of marine resources for low carbon and green growth. Economic feasibility analysis was conducted for the research and development as follows on the use of ocean thermal energy conversion and seawater air conditioning. First, in the case of power generation using deep seawater and warm discharge water from ocean thermal energy conversion plant of 1MW level, it is judged that the economic feasibility is insufficient but the feasibility will be significantly improved if we consider not only power generation but also drinking water and certified emission reduction by developing the power plant to the size for commercialization. Second, the economic feasibility for the use of deep seawater as air conditioning for the power plant of 1,000RT level turned out to be very good. Especially, when we consider certified emission reduction, it will be possible to secure sufficient economic feasibility. When we use it in connection with ocean thermal energy conversion, water conversion and agricultural and fishery use, it is judged that economic ripple effect will be significant and therefore it will be necessary to conduct research and development for early commercialization, distribution and diffusion of deep seawater energy.

Dietary evaluation of a low-iodine diet in Korean thyroid cancer patients preparing for radioactive iodine therapy in an iodine-rich region

  • Ju, Dal Lae;Park, Young Joo;Paik, Hee-Young;Kim, Min-Ji;Park, Seonyeong;Jung, Kyong Yeun;Kim, Tae Hyuk;Choi, Hun Sung;Song, Yoon Ju
    • Nutrition Research and Practice
    • /
    • v.10 no.2
    • /
    • pp.167-174
    • /
    • 2016
  • BACKGROUND/OBJECTIVES: Despite the importance of a low-iodine diet (LID) for thyroid cancer patients preparing for radioactive iodine (RAI) therapy, few studies have evaluated dietary intake during LID. This study evaluated the amount of dietary iodine intake and its major food sources during a typical diet and during LID periods for thyroid cancer patients preparing for RAI therapy, and examined how the type of nutrition education of LID affects iodine intake. SUBJECTS/METHODS: A total of 92 differentiated thyroid cancer patients with total thyroidectomy were enrolled from Seoul National University Hospital. All subjects completed three days of dietary records during usual and low-iodine diets before $^{131}I$ administration. RESULTS: The median iodine intake was $290{\mu}g/day$ on the usual diet and $63.2{\mu}g/day$ on the LID. The major food groups during the usual diet were seaweed, salted vegetables, fish, milk, and dairy products and the consumption of these foods decreased significantly during LID. The mean energy intake on the LID was 1,325 kcal, which was 446 kcal lower than on the usual diet (1,771 kcal). By avoiding iodine, the intake of most other nutrients, including sodium, was significantly reduced during LID (P < 0.005). Regarding nutritional education, intensive education was more effective than a simple education at reducing iodine intake. CONCLUSION: Iodine intake for thyroid cancer patients was significantly reduced during LID and was within the recommended amount. However, the intake of most other nutrients and calories was also reduced. Future studies are needed to develop a practical dietary protocol for a LID in Korean patients.

Post Harvest Technology for High Quality Rice (고품질 쌀 생산을 위한 수확 후 관리기술)

  • 김동철
    • Proceedings of the Korean Society of Postharvest Science and Technology of Agricultural Products Conference
    • /
    • 2002.08a
    • /
    • pp.54-63
    • /
    • 2002
  • Post-harvest technology for rice was focused on in-bin drying system, which consists of about 100, 000 facilities in 1980s. The modernized Rice Processing Complex (RPC) and Drying Storage Center (DSC) became popular for rice dry, storage, process and distribution from 1990s. However, the percentage of artificial drying for rice is 48% (2001) and the ability of bulk storage is about 15%. Therefore it is necessary to build enough drying and bulk storage facilities. The definition of high quality rice is to satisfy both good appearance and good taste. The index for good taste in rice is a below 7% of protein, 17-20% of amylose, 15.5-16.5% of moisture contents and high concentration of Mg and K. To obtain a high quality rice, it is absolutely needed to integrate high technologies including breeding program, cropping methods, harvesting time, drying, storing and processing methodologies. Generally, consumers prefer to rice retaining below b value of 5 in colorimetry, and the whiteness, the hardness and the moisture contents of rice are in order of consumer preference in rice quality. By selection of rice cultivars according to acceptable quality, the periods between harvesting time and drying reduced up to about 20 days. Therefore it is necessary to develop a low temperature grain drying system in order to (1) increase the rate of artificial rice drying up to 85%, (2) keep the drying temperature of below 45C, (3) maintain high quality in rice and (4) save energy consumption. Bulk storage facilities with low temperature storage system (7-15C) for rice using grain cooler should be built to reduce labor for handling and transportation and to keep a quality of rice. In the cooled rice, there is no loss of grain quality due to respiration, insect and microorganism, which results in high quality rice containing 16% of moisture contents all year round. In addition, introducing a low temperature milling system reduced the percentage of broken rice to 2% and increased the percentage of head rice to 3% because of proper hardness of grain. It has been noted that the broken rice and cracking reduced significantly by using low pressure milling and wet milling. Our mission for improving rice market competitiveness goes to (1) produce environment friendly, functional rice cultivars, (2) establish a grade standard of rice quality, (3) breed a new cultivar for consumer oriented and (4) extend the period of storage and shelf life of rice during postharvest.

  • PDF

Estimation of CO2 Mitigation Potentials using Food Miles of Domestic and Imported Food - About Beef and Wine - (푸드 마일리지를 이용한 식품의 이산화탄소 감축 잠재량 평가 - 쇠고기와 포도주를 대상으로 -)

  • Seong, Mi-Ae;Kim, Dai-Gon;Lee, Jae-Bum;Ryu, Ji-Yeon;Hong, You-Deog
    • Journal of Climate Change Research
    • /
    • v.2 no.1
    • /
    • pp.15-32
    • /
    • 2011
  • Due to greenhouse gas increased by human activities, abnormal climate changes are continuously occurring everywhere in the world and internationally people make efforts to reduce the emission of greenhouse gas. Our country also is making endeavors to realize low carbon society on the foundation of the green growth and for this low carbon consumption pattern settlement through green life is necessary. Therefore for the nationals the offering of the information on greenhouse gas emission that is reduced through the change to low carbon life is required. In this study the objects are beef and wine whose weight of import is high among the beverages and foods consumed in the country and we calculated the food mileage and emission of carbon dioxide of the domestic and foreign product beef and wine and estimated the potential amount that can be reduced when replacing the imported products with domestic products. As the year 2007 being standard if we replace 10% of imported beef with domestic products it is possible to reduce 14,000 tons of carbon dioxide per year and on one day out of a year if we replace imported beef with domestic beef the reduction of 384 tons of carbon dioxide is appeared to be possible. In the same standard year if we replace 10% of imported wine with domestic product we can reduce 1,396 tons and on one day out of a year if we replace imported wine with domestic wine reduction of 38 tons of carbon per year appeared to be possible. Through active promotion and expansion of variety of domestic foods and beverages in the real life of the nationals the consumption pattern of natural low carbon life should be achieved and offering of more systematized greenhouse gas emission DB is thought to be necessary.

Evaluation of cellular energy allocation (CEA) in the Manila clam, Ruditapes philippinarum as a tool for assessment of contaminated sediments (오염 퇴적물 평가 기법으로서의 바지락 (Ruditapes philippinarum) 세포내 에너지 할당 (cellular energy allocation, CEA) 적용성 검토)

  • Sung, Chan-Gyoung;Kang, Sin-Kil;Chung, Jiwoong;Park, Dong-Ho;Lee, Jong-Hyeon;Lee, Chang-Hoon
    • The Korean Journal of Malacology
    • /
    • v.32 no.1
    • /
    • pp.45-54
    • /
    • 2016
  • To evaluate the applicability of cellular energy allocation (CEA) in the bivalves as a biomarker for the assessment of environmental contamination, the energy contents and energy consumption in several tissues of the Manila clam, Ruditapes philippinarum were analyzed. The contents of lipid, glucose, protein and electron transport system (ETS) activity in the foot, siphons, gills, and body of R. philippinarum exposed to crude oil-spiked sediments were measured at 1, 2, 4, 7, 10 days after exposure. The reserved energy (energy available, EA) in the lipid, glucose and protein decreased as contamination level and exposure time increased. In contrast, the ETS activity (energy consumed, EC) showed the reverse tendency. The order of available energy contents were foot > siphons > gill > body. Significant differences in both EA and EC were found only at the highest contamination level (58.3 mg TPAHs/kg DW). EA decreased significantly in the foot and gill at 1 day, in the body at 2 and 7 days after exposure. EC increased significantly in the body at 4 days after exposure. CEA showed higher sensitivity to the contamination than EA or EC. Especially, CEA in the foot and body decreased significantly at lower ranges of contamination level (as low as 6.5 mg TPAHs/kg DW) during 1 to 7 days after exposure. The CEA is more useful than EA or EC alone for the assessment of sediment contamination at lower level that acute toxicity could not be detected. CEA analyses in the body of R. philippinarum after 4 days' exposure to contaminated sediments seem to be the most sensitive and reliable.

Recent Progress in Air-Conditioning and Refrigeration Research: A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2011 (설비공학 분야의 최근 연구 동향: 2011년 학회지 논문에 대한 종합적 고찰)

  • Han, Hwa-Taik;Lee, Dae-Young;Kim, Seo-Young;Choi, Jong-Min;Paik, Yong-Kyoo;Kim, Su-Min
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.24 no.6
    • /
    • pp.521-537
    • /
    • 2012
  • This article reviews the papers published in the Korean Journal of Air-Conditioning and Refrigeration Engineering during 2011. It is intended to understand the status of current research in the areas of heating, cooling, ventilation, sanitation, and indoor environments of buildings and plant facilities. Conclusions are as follows. (1) Research trends of thermal and fluid engineering have been surveyed as groups of fluid machinery and fluid flow, thermodynamic cycle, and new and renewable energy. Various topics were presented in the field of fluid machinery and fluid flow. Research issues mainly focused on the rankine cycle in the field of thermodynamic cycle. In the new and renewable energy area, researches were presented on geothermal energy, fuel cell, biogas, reformer, solar water heating system, and metane hydration. (2) Research works on heat transfer area have been reviewed in the categories of heat transfer characteristics, pool boiling and condensing heat transfer, nanofluids and industrial heat exchangers. Researches on heat transfer characteristics included heat transfer above liquid helium surface in a cryostat, methane hydrate formation, heat and mass transfer in a liquid desiccant dehumidifier, thermoelectric air-cooling system, heat transfer in multiple slot impinging jet, and heat transfer enhancement by protrusion-in-dimples. In the area of pool boiling and condensing heat transfer, researches on pool boiling of water in low-fin and turbo-B surfaces, pool boiling of R245a, convective boiling two-phase flow in trapezoidal microchannels, condensing of FC-72 on pin-finned surfaces, and natural circulation vertical evaporator were actively performed. In the area of nanofluids, thermal characteristics of heat pipes using water-based MWCNT nanofluids and the thermal conductivity and viscosity were measured. In the area of industrial heat exchangers, researches on fin-tube heat exchangers for waste gas heat recovery and Chevron type plate heat exchanger were implemented. (3) Refrigeration systems with alternative refrigerants such as $CO_2$, hydrocarbons, and mixed refrigerants were studied. Heating performance improvement of heat pump systems were tried applying supplementary components such as a refrigerant heater or a solar collector. The effects of frost growth were studied on the operation characteristic of refrigeration systems and the energy performance of various defrost methods were evaluated. The current situation of the domestic cold storage facilities was analyzed and the future demand was predicted. (4) In building mechanical system fields, a variety of studies were conducted to achieve effective consumption of heat and maximize efficiency of heat in buildings. Various researches were performed to maximize performance of mechanical devices and optimize the operation of HVAC systems. (5) In the fields of architectural environment and energy, diverse purposes of studies were conducted such as indoor environment, building energy, and renewable energy. In particular, renewable energy and building energy-related researches have mainly been studied as reflecting the global interests. In addition, various researches have been performed for reducing cooling load in a building using spot exhaust air, natural ventilation and energy efficiency systems.