• Title/Summary/Keyword: low dimensional materials

Search Result 434, Processing Time 0.027 seconds

pH-Controlled Synthesis of Carbon Xerogels for Coin-Type Organic Supercapacitor Electrodes (pH를 조절하여 제조한 카본제어로젤을 이용한 코인타입 유기계 슈퍼커패시터 전극)

  • Ji Chul Jung;Wonjong Jung
    • Korean Journal of Materials Research
    • /
    • v.33 no.10
    • /
    • pp.430-438
    • /
    • 2023
  • In this study, we synthesized pH-controlled resorcinol-formaldehyde (RF) gels through the polymerization of two starting materials: resorcinol and formaldehyde. The prepared RF gels were dried using an acetone substitution method, and they were subsequently carbonized under nitrogen atmosphere to obtain carbon xerogels (CX_Y) prepared at different pH (Y). The carbon xerogels were utilized as active materials for coin-type organic supercapacitor electrodes to investigate the influence of pH on the electrochemical properties of the carbon xerogels. The carbon xerogels prepared at lower pH (CX_9.5 and CX_10) exhibited sufficient particle growth, with a three-dimensional network of particles during the RF gel formation, resulting in the development of abundant mesopores. Conversely, the carbon xerogels prepared at higher pH (CX_11 and CX_12) retained densely packed structures of small particles, leading to pore collapse and low specific surface areas. Consequently, CX_9.5 and CX_10 showed high specific surface areas, and provided ample adsorption sites for the formation of electric double layers with electrolyte ions. Moreover, the three-dimensional particle network in CX_9.5 and CX_10 significantly enhanced electrical conductivity. The presence of well-developed mesopores in these materials further facilitated the effective transport of electrolyte ions, contributing to their superior performance as organic supercapacitor electrodes. This study confirmed that pH-controlled carbon xerogels are one of the promising active materials for organic supercapacitor electrodes. Furthermore, we concluded that pH during RF gel formation is a crucial factor determining the electrode performance of the carbon xerogels, highlighting the need for precise pH control to obtain high-performance carbon xerogel electrodes.

Microstructures of Powders and Additively Manufactured Objects of an Alloy Tool Steel for Cold-Work Dies (냉간금형용 합금공구강 분말 및 적층조형체의 미세조직)

  • Kang, Jun-Yun;Yun, Jaecheol;Kim, Hoyoung;Kim, Byunghwan;Choe, Jungho;Yang, Sangsun;Yu, Ji-Hun;Kim, Yong-Jin
    • Journal of Powder Materials
    • /
    • v.24 no.3
    • /
    • pp.202-209
    • /
    • 2017
  • A cold-work tool steel powder is used to fabricate 3-dimensional objects by selective laser melting using a high-pressure gas atomization process. The spherical powder particles form continuous carbide networks among the austenite matrix and its decomposition products. The carbides comprise Nb-rich MC and Mo-rich $M_2C$. In the SLM process, the process parameters such as the laser power (90 W), layer thickness ($25{\mu}m$), and hatch spacing ($80{\mu}m$) are kept fixed, while the scan speed is changed from 50 mm/s to 4000 mm/s. At a low scan speed of 50 mm/s, spherical cavities develop due to over melting, while they are substantially reduced on increasing the speed to 2000 mm/s. The carbide network spacing decreases with increasing speed. At an excessively high speed of 4000 mm/s, long and irregularly shaped cavities are developed due to incomplete melting. The influence of the scan pattern is examined, for which $1{\times}1 mm^2$ blocks constituting a processing layer are irradiated in a random sequence. This island-type pattern exhibits the same effect as that of a low scan speed. Post processing of an object using hot isostatic pressing leads to a great reduction in the porosity but causes coarsening of the microstructure.

Micro-computed tomography for assessing the internal and external voids of bulk-fill composite restorations: A technical report

  • Tosco, Vincenzo;Monterubbianesi, Riccardo;Furlani, Michele;Giuliani, Alessandra;Putignano, Angelo;Orsini, Giovanna
    • Imaging Science in Dentistry
    • /
    • v.52 no.3
    • /
    • pp.303-308
    • /
    • 2022
  • Purpose: This technical report aims to describe and detail the use of micro-computed tomography for a reliable evaluation of the bulk-fill composite/tooth interface. Materials and Methods: Bulk-fill composite restorations in tooth cavities were scanned using micro-computed tomography to obtain qualitatively and quantitatively valuable information. Two-dimensional information was processed using specific algorithms, and ultimately a 3-dimensional (3D) specimen reconstruction was generated. The 3D rendering allowed the visualization of voids inside bulk-fill composite materials and provided quantitative measurements. The 3D analysis software VG Studio MAX was used to perform image analysis and assess gap formation within the tooth-restoration interface. In particular, to evaluate internal adaptation, the Defect Analysis addon module of VG Studio Max was used. Results: The data, obtained with the processing software, highlighted the presence and the shape of gaps in different colours, representing the volume of porosity within a chromatic scale in which each colour quantitatively represents a well-defined volume. Conclusion: Micro-computed tomography makes it possible to obtain several quantitative parameters, providing fundamental information on defect shape and complexity. However, this technique has the limit of not discriminating materials without radiopacity and with low or no filler content, such as dental adhesives, and hence, they are difficult to visualise through software reconstruction.

Enhancement of Electrochemical and Mechanical Properties of 3D Graphene Nanostructures by Dopamine-coating (도파민 코팅을 이용한 3차원 그래핀 나노 구조체의 전기화학적/기계적 특성 향상 연구)

  • Lee, Guk Hwan;Luan, Van Hoang;Han, Jong Hun;Kang, Hyun Wook;Lee, Wonoh
    • Composites Research
    • /
    • v.32 no.6
    • /
    • pp.388-394
    • /
    • 2019
  • Inherited the excellent electrical and mechanical properties based on the low dimensional structure of graphene, three-dimensional graphene nanostructures have gathered great attention as electrochemical energy storage electrodes owing to their high porosity and large specific surface area. Also, having the catecholamine structure, dopamine has been regarded as a multifunctional material to possess high affinity to various organic/inorganic materials and to modify a hydrophobic surface to a hydrophilic one. In this work, through coating dopamine on the three-dimensional graphene nanostructure, we tried to increase the specific capacitance by enhancing the wettability with electrolyte and to improve the mechanical compressive property by strengthening the nano-architecture. As a result, the dopamine-coated nanostructure exhibited significant improvement on the specific capacitance (51.5% increase) and compressive stress (59.6% increase).

Nano Convergence Systems for Smart Living

  • Yeo, Jong-Souk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.55-55
    • /
    • 2015
  • Today, engineers are facing new set of challenges that are quite different from the conventional ones. Information technologies are rapidly commoditizing while the paths beyond the current roadmaps became uncertain as various technologies have been pushed to their limits. Along with these changes in IT ecosystems, grand challenges such as global security, health, sustainability, and energy increasingly require trans-disciplinary solutions that go beyond the traditional arenas in STEM (Science, Technology, Engineering and Mathematics). Addressing these needs is shifting engineering education and research to a new paradigm where the emphasis is placed on the consilience for holistic and system level understanding and the convergence of technology with AHSD (arts, humanities, social science, and design). At the center of this evolutionary convergence, nanotechnologies are enabling novel functionalities such as bio-compatibility, flexibility, low power, and sustainability while on a mission to meet scalability and low cost for smart electronics, u-health, sensing networks, and self-sustainable energy systems. This talk introduces the efforts of convergence based on the emerging nano technology tool sets in the newly launched School of Integrated Technology and the Yonsei Institute of Convergence Technology at Yonsei International Campus. While the conventional devices have largely depended upon the inherent material properties, the newer devices are enabled by nanoscale dimensions and structures in increasingly standardized and scalable fabrication platform. Localized surface plasmon resonance in 0 dimensional nano particles and structures leads to subwavelength confinement and enhanced near-field interactions enabling novel field of metal photonics for sensing and integrated photonic applications [1,2]. Unique properties offered by 1 dimensional nanowires and 2 dimensional materials and structures can enable novel electronic, photonic, nano-bio, and biomimetic applications [3-5]. These novel functionalities offered by the emerging nanotechnologies are continuously finding pathways to be part of smart systems to improve the overall quality of life.

  • PDF

Removal of Aspect-Ratio-Dependent Etching by Low-Angle Forward Reflected Neutral-Beam Etching (Low-Angle Forward Reflected Neutral Beam Etching을 이용한 Aspect-Ratio-Dependent Etching 현상의 제거)

  • Min Kyung-Seok;Park Byoung-Jae;Yeom Geun-Young;Kim Sung-Jin;Lee Jae-Koo
    • Journal of the Korean Vacuum Society
    • /
    • v.15 no.4
    • /
    • pp.387-394
    • /
    • 2006
  • In this study, the effect of using a neutral beam formed by low-angle forward reflection of a reactive ion beam on aspect-ratio-dependent etching (ARDE) has been investigated. When a SF6 Inductively Coupled Plasma and $SF_6$ ion beam etching are used to etch poly-Si, ARDE is observed and the etching of poly-Si on $SiO_2$ shows a higher ARDE effect than the etching of poly-Si on Si. However, by using neutral beam etching with neutral beam directionality higher than 70 %, ARDE during poly-Si etching by $SF_6$ can be effectively removed, regardless of the sample conditions. The mechanism for the removal of ARDE via a directional neutral beam has been demonstrated through a computer simulation of different nanoscale features by using the two-dimensional XOOPIC code and the TRIM code.

Microstructure of TiO2 sensor electrode on nano block copolymertemplates using an ALD (나노 블록공중합체 템플레이트에 ALD로 제조된 센서용 TiO2 박막의 미세구조 연구)

  • Park, Jong-Sung;Han, Jeung-Jo;Song, Oh-Sung;Jeon, Seung-Min;Kim, Hyeong-Ki
    • Journal of Sensor Science and Technology
    • /
    • v.18 no.3
    • /
    • pp.239-244
    • /
    • 2009
  • We fabricated nano-templates by low temperature BCP(block copolymer) process at 180 $^{\circ}C$, then we deposited 10 nm-thick $TiO_2$ layers with ALD(atomic layer deposition) at low temperature of 150 $^{\circ}C$. Through FE-SEM analysis, we confirmed the successful formation of the groove-type(width of crest : 30 nm, width of trough : 18 nm) and the cylinder-type(diameter : 10 nm, distance between hole : 25 nm) templates. Moreover, after $TiO_2$-ALD processing, we confirmed the deposition of the uniform nano layers of $TiO_2$ on the nano-templates. Through AFM analysis, the pitches of the crest-through(in groove-type) and hole-hole(in cylinder-type) were the same before and after $TiO_2$-ALD processing. In addition, we indirectly determined the existence of the uniform $TiO_2$ layers on nano-templates as the surface roughness decreased drastically. We successfully fabricated nano-template at low temperature and confirmed that the three-dimensional nano-structure for sensor application could be achieved by $TiO_2$-ALD processing at extremely low temperature of 150 $^{\circ}C$.

Plasma Engineering for Nano-Materials

  • Kim, Seong-In;Shin, Myoung-Sun;Son, Byung-Koo;Song, Seok-Kyun;Choi, Sun-Yong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.79-79
    • /
    • 2012
  • A high temperature and a low temperature plasma process technologies were developed and demonstrated for synthesis, hybrid formation, surface treatment and CVD engineering of nano powder. RF thermal plasma is used for synthesis of spherical nano particles in a diameter ranged from 10 nm to 100 nm. A variety of nano particules such as Si, Ni, has been synthesized. The diameter of the nano-particles can be controlled by RF plasma power, pressure, gas flow rate and raw material feed rate. A modified RF thermal plasma also produces nano hybrid materials with graphene. Hemispherical nano-materials such as Ag, Ni, Si, SiO2, Al2O3, size ranged from 30 to 100 nm, has been grown on graphene nanoplatelet surface. The coverage ranged from 0.1 to 0.7 has been achieved uniformly over the graphene surface. Low temperature AC plasma is developed for surface modification of nano-powder. In order to have a three dimensional and lengthy plasma treatment, a spiral type of reactor has been developed. A similar plasma reactor has been modfied for nano plasma CVD process. The reactor can be heated with halogen lamp.

  • PDF

Activation analysis of targets and lead in a lead slowing down spectrometer system

  • Lee, Yongdeok;Kim, Jeong Dong;Ahn, Seong Kyu;Park, Chang Je
    • Nuclear Engineering and Technology
    • /
    • v.50 no.1
    • /
    • pp.182-189
    • /
    • 2018
  • A neutron generation system was developed to induce fissile fission in a lead slowing down spectrometer (LSDS) system. The source neutron is one of the key factors for LSDS system work. The LSDS was developed to quantify the isotopic contents of fissile materials in spent nuclear fuel and recycled fuel. The source neutron is produced at a multilayered target by the (e,${\gamma}$)(${\gamma}$,n) reaction and slowed down at the lead medium. Activation analysis of the target materials is necessary to estimate the lifetime, durability, and safety of the target system. The CINDER90 code was used for the activation analysis, and it can involve three-dimensional geometry, position dependent neutron flux, and multigroup cross-section libraries. Several sensitivity calculations for a metal target with different geometries, materials, and coolants were done to achieve a high neutron generation rate and a low activation characteristic. Based on the results of the activation analysis, tantalum was chosen as a target material due to its better activation characteristics, and helium gas was suggested as a coolant. In addition, activation in a lead medium was performed. After a distance of 55 cm from the lead surface to the neutron incidence, the neutron intensity dramatically decreased; this result indicates very low activation.

Optimization of extrusion process for long-length multi-filaments of BSCCO 2223 superconductor tape (고온초전도 BSCC02223 장선재 제조를 위한 압출공정의 최적화)

  • Cho, Ki-Hyun;Choi, Jong-Ung;Yoo, Jim-Moo;Ko, Jae-Woong;Kim, Hai-Doo
    • 한국초전도학회:학술대회논문집
    • /
    • v.10
    • /
    • pp.230-235
    • /
    • 2000
  • The extrusion process for long-length multi-filaments of BSCCO 2223 superconductor tape has been investigated with aids of Finite Element Method and experimental inspection. Since the arrangement of filaments in matrix material has characteristic of rotational symmetry, a 2-dimensional commercial FEM package, DEFORM-2D, was adopted to simulate extrusion process with different variables such as hardness of sheath material, lengths of each filament and arrangement. From the FEM analysis, since the inner filaments move faster than the outer one, distribution of filaments is needed to be optimized. In the case of pure Ag matrix, undesirable non-uniform distribution of filament was obtained due to low hardness of sheath material. Dummy sample(brass (sheath) and talc powder(filament)), however, which has relatively high hardness of sheath material, had been produced with desirable results. Therefore, it is necessary to optimize hardness of sheath material, extrusion temperature and billet design.

  • PDF