• Title/Summary/Keyword: low cytotoxicity

Search Result 436, Processing Time 0.021 seconds

Developing a Virus-Binding Bacterium Expressing Mx Protein on the Bacterial Surface to Prevent Grouper Nervous Necrosis Virus Infection

  • Lin, Chia-Hua;Chen, Jun-Jie;Cheng, Chiu-Min
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.8
    • /
    • pp.1088-1097
    • /
    • 2021
  • Grouper nervous necrosis virus (GNNV) infection causes mass grouper mortality, leading to substantial economic loss in Taiwan. Traditional methods of controlling GNNV infections involve the challenge of controlling disinfectant doses; low doses are ineffective, whereas high doses may cause environmental damage. Identifying potential methods to safely control GNNV infection to prevent viral outbreaks is essential. We engineered a virus-binding bacterium expressing a myxovirus resistance (Mx) protein on its surface for GNNV removal from phosphate-buffered saline (PBS), thus increasing the survival of grouper fin (GF-1) cells. We fused the grouper Mx protein (which recognizes and binds to the coat protein of GNNV) to the C-terminus of outer membrane lipoprotein A (lpp-Mx) and to the N-terminus of a bacterial autotransporter adhesin (Mx-AIDA); these constructs were expressed on the surfaces of Escherichia coli BL21 (BL21/lpp-Mx and BL21/Mx-AIDA). We examined bacterial surface expression capacity and GNNV binding activity through enzyme-linked immunosorbent assay; we also evaluated the GNNV removal efficacy of the bacteria and viral cytotoxicity after bacterial adsorption treatment. Although both constructs were successfully expressed, only BL21/lpp-Mx exhibited GNNV binding activity; BL21/lpp-Mx cells removed GNNV and protected GF-1 cells from GNNV infection more efficiently. Moreover, salinity affected the GNNV removal efficacy of BL21/lpp-Mx. Thus, our GNNV-binding bacterium is an efficient microparticle for removing GNNV from 10‰ brackish water and for preventing GNNV infection in groupers.

Investigation on the effect of water extracts of Mangifera indica leaves on the hair loss-related genes in human dermal papilla cells (망고 잎 열수 추출물의 모유두 세포에서 탈모 관련 유전자 발현에 미치는 영향 연구)

  • Choi, Youngsoo;Kim, Eunmi;Lee, Seong Hee;Han, Hyosang;Kim, Keekwang
    • The Korea Journal of Herbology
    • /
    • v.36 no.3
    • /
    • pp.39-46
    • /
    • 2021
  • Objectives : Mangifera indica leaves are well known for having a variety of benefits, including anti-inflammatory, anti-tumor, diabetic retinopathy and diabetic vasculosis. However, the effects of Mangifera indica leaves on hair loss inhibition have not been studied. In this study, we investigated to find out the activity of Mangifera indica leaves on hair loss. Methods : 2,2'-azino-bis-3-ethylbenzothiazoline-6-sulphonic acid(ABTS) analysis was performed to confirm the antioxidant efficacy of the water extract of Mangifera indica leaves (WEML). To examine the effect of WEML on cell viability in dermal papillar (DP) cells, 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetra Zolium (MTS) analysis was performed. The changes in the mRNA expression level of the hair loss and hair growth-related genes in dermal papilla cells by WEML treatment were confirmed by quantitative RT-PCR. Results : In dermal papilla (DP) cells, ABTS analysis and MTS analysis of WEML showed antioxidant efficacy and low cytotoxicity. As a result of gene expression analysis through Quantitative RT-PCR, no changes in hair growth-related genes BMP6 and CTNNB1 was confirmed. but inhibitory activity of WEML on hair loss-related genes EGR1, SGK, DKK1, SRD5A1 and SRD5A2 was confirmed. Conclusion : We confirmed that WEML has excellent antioxidant efficacy and a inhibitory activity of hair loss-related genes including 5α-reductase genes. These results suggest that Mangifera indica leaves have a potential activity as a hair loss treatment for hair loss and hair growth. Biochemical or molecular biological research on hair loss is needed.

Physiological activities of ethanol extract of Allium tuberosum root (부추뿌리 추출물의 생리활성)

  • Kim, Hyun-Soo
    • Korean Journal of Food Science and Technology
    • /
    • v.53 no.2
    • /
    • pp.160-164
    • /
    • 2021
  • This study investigated various physiological activities to examine the applicability of the functional materials of Allium tuberosum root extract. The A. tuberosum root extract showed a low cytotoxicity against murine melanoma B16F10 cells. It also showed high DPPH radical scavenging activity (ID50, 6.2 ㎍/mL), inhibited tyrosinase activity (ID50, 115.4 ㎍/mL), and decreased melanin content (ID50, 31.5 ㎍/mL). Treatment of B16F10 cells with A. tuberosum root extract suppressed the protein expression of tyrosinase in a dose-dependent manner. These findings suggest that A. tuberosum root extract inhibits melanin synthesis by suppressing intracellular tyrosinase expression. Additionally, A. tuberosum root extract inhibited elastase with an ID50 value of 145.1 ㎍/mL and contained isoquercitrin. These results indicate that A. tuberosum root extract is an appropriate natural material.

Donor Specific Antibody Negative Antibody-Mediated Rejection after ABO Incompatible Liver Transplantation

  • Lee, Boram;Ahn, Soomin;Kim, Haeryoung;Han, Ho-Seong;Yoon, Yoo-Seok;Cho, Jai Young;Choi, Young Rok
    • Korean Journal of Transplantation
    • /
    • v.32 no.4
    • /
    • pp.108-112
    • /
    • 2018
  • Antibody-mediated rejection (AMR) is a major complication after ABO-incompatible liver transplantation. According to the 2016 Banff Working Group on Liver Allograft Criteria for the diagnosis of acute AMR, a positive serum donor specific antibody (DSA) is needed. On the other hand, the clinical significance of the histological findings of AMR in the absence of DSA is unclear. This paper describes a 57-year-old man (blood type, O+) who suffered from hepatitis B virus cirrhosis with hepatocellular carcinoma. Pre-operative DSA and cross-matching were negative. After transplantation, despite the improvement of the liver function, acute AMR was observed in the protocol biopsy on postoperative day 7; the cluster of differentiation 19+ (CD19+) count was 0% and anti-ABO antibody titers were 1:2. This paper presents the allograft injury like AMR in the absence of DSA after ABOi living donor liver transplantation with low titers of anti-ABO antibody and depleted serum CD19+ B cells.

Nicotinamide riboside regulates inflammation and mitochondrial markers in AML12 hepatocytes

  • Lee, Hee Jae;Yang, Soo Jin
    • Nutrition Research and Practice
    • /
    • v.13 no.1
    • /
    • pp.3-10
    • /
    • 2019
  • BACKGROUND/OBJECTIVES: The $NAD^+$ precursor nicotinamide riboside (NR) is a type of vitamin $B_3$ found in cow's milk and yeast-containing food products such as beer. Recent studies suggested that NR prevents hearing loss, high-fat diet-induced obesity, Alzheimer's disease, and mitochondrial myopathy. The objective of this study was to investigate the effects of NR on inflammation and mitochondrial biogenesis in AML12 mouse hepatocytes. MATERIALS/METHODS: A subset of hepatocytes was treated with palmitic acid (PA; $250{\mu}M$) for 48 h to induce hepatocyte steatosis. The hepatocytes were treated with NR ($10{\mu}M$ and 10 mM) for 24 h with and without PA. The cell viability and the levels of sirtuins, inflammatory markers, and mitochondrial markers were analyzed. RESULTS: Cytotoxicity of NR was examined by PrestoBlue assay. Exposure to NR had no effect on cell viability or morphology. Gene expression of sirtuin 1 (Sirt1) and Sirt3 was significantly upregulated by NR in PA-treated hepatocytes. However, Sirt1 activities were increased in hepatocytes treated with low-dose NR. Hepatic pro-inflammatory markers including tumor necrosis factor-alpha and interleukin-6 were decreased in NR-treated cells. NR upregulated anti-inflammatory molecule adiponectin, and, tended to down-regulate hepatokine fetuin-A in PA-treated hepatocytes, suggesting its inverse regulation on these cytokines. NR increased levels of mitochondrial markers including peroxisome proliferator-activated receptor ${\gamma}$ coactivator-$1{\alpha}$, carnitine palmitoyltransferase 1, uncoupling protein 2, transcription factor A, mitochondrial and mitochondrial DNA in PA-treated hepatocytes. CONCLUSIONS: These data demonstrated that NR attenuated hepatic inflammation and increased levels of mitochondrial markers in hepatocytes.

Discovery of New Fusion Inhibitor Peptides against SARS-CoV-2 by Targeting the Spike S2 Subunit

  • Kandeel, Mahmoud;Yamamoto, Mizuki;Tani, Hideki;Kobayashi, Ayako;Gohda, Jin;Kawaguchi, Yasushi;Park, Byoung Kwon;Kwon, Hyung-Joo;Inoue, Jun-ichiro;Alkattan, Abdallah
    • Biomolecules & Therapeutics
    • /
    • v.29 no.3
    • /
    • pp.282-289
    • /
    • 2021
  • A novel coronavirus, severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), caused a worldwide pandemic. Our aim in this study is to produce new fusion inhibitors against SARS-CoV-2, which can be the basis for developing new antiviral drugs. The fusion core comprising the heptad repeat domains (HR1 and HR2) of SARS-CoV-2 spike (S) were used to design the peptides. A total of twelve peptides were generated, comprising a short or truncated 24-mer (peptide #1), a long 36-mer peptide (peptide #2), and ten peptide #2 analogs. In contrast to SARS-CoV, SARS-CoV-2 S-mediated cell-cell fusion cannot be inhibited with a minimal length, 24-mer peptide. Peptide #2 demonstrated potent inhibition of SARS-CoV-2 S-mediated cell-cell fusion at 1 µM concentration. Three peptide #2 analogs showed IC50 values in the low micromolar range (4.7-9.8 µM). Peptide #2 inhibited the SARS-CoV-2 pseudovirus assay at IC50=1.49 µM. Given their potent inhibition of viral activity and safety and lack of cytotoxicity, these peptides provide an attractive avenue for the development of new prophylactic and therapeutic agents against SARS-CoV-2.

Influenza Chimeric Protein (3M2e-3HA2-NP) Adjuvanted with PGA/Alum Confers Cross-Protection against Heterologous Influenza A Viruses

  • Kwak, Chaewon;Nguyen, Quyen Thi;Kim, Jaemoo;Kim, Tae-Hwan;Poo, Haryoung
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.2
    • /
    • pp.304-316
    • /
    • 2021
  • Vaccination is the most effective way to prevent influenza virus infections. However, conventional vaccines based on hemagglutinin (HA) have to be annually updated because the HA of influenza viruses constantly mutates. In this study, we produced a 3M2e-3HA2-NP chimeric protein as a vaccine antigen candidate using an Escherichia coli expression system. The vaccination of chimeric protein (15 ㎍) conferred complete protection against A/Puerto Rico/8/1934 (H1N1; PR8) in mice. It strongly induced influenza virus-specific antibody responses, cytotoxic T lymphocyte activity, and antibody-dependent cellular cytotoxicity. To spare the dose and enhance the cross-reactivity of the chimeric, we used a complex of poly-γ-glutamic acid and alum (PGA/alum) as an adjuvant. PGA/alum-adjuvanted, low-dose chimeric protein (1 or 5 ㎍) exhibited higher cross-protective effects against influenza A viruses (PR8, CA04, and H3N2) compared with those of chimeric alone or alum-adjuvanted proteins in vaccinated mice. Moreover, the depletion of CD4+ T, CD8+ T, and NK cells reduced the survival rate and efficacy of the PGA/alum-adjuvanted chimeric protein. Collectively, the vaccination of PGA/alum-adjuvanted chimeric protein induced strong protection efficacy against homologous and heterologous influenza viruses in mice, which suggests that it may be a promising universal influenza vaccine candidate.

The Water-Soluble Chitosan Derivative, N-Methylene Phosphonic Chitosan, Is an Effective Fungicide against the Phytopathogen Fusarium eumartii

  • Mesas, Florencia Anabel;Terrile, Maria Cecilia;Silveyra, Maria Ximena;Zuniga, Adriana;Rodriguez, Maria Susana;Casalongue, Claudia Anahi;Mendieta, Julieta Renee
    • The Plant Pathology Journal
    • /
    • v.37 no.6
    • /
    • pp.533-542
    • /
    • 2021
  • Chitosan has been considered an environmental-friendly polymer. However, its use in agriculture has not been extended yet due to its relatively low solubility in water. N-Methylene phosphonic chitosan (NMPC) is a water-soluble derivative prepared by adding a phosphonic group to chitosan. This study demonstrates that NMPC has a fungicidal effect on the phytopathogenic fungus Fusarium solani f. sp. eumartii (F. eumartii) judged by the inhibition of F. eumartti mycelial growth and spore germination. NMPC affected fungal membrane permeability, reactive oxygen species production, and cell death. Also, this chitosan-derivative exerted antifungal effects against two other phytopathogens, Botrytis cinerea, and Phytophthora infestans. NMPC did not affect tomato cell viability at the same doses applied to these phytopathogens to exert fungicide action. In addition to water solubility, the selective biological cytotoxicity of NMPC adds value in its application as an antimicrobial agent in agriculture.

Comparative Study of Autophagy in Oxaliplatin-Sensitive and Resistant SNU-C5 Colon Cancer Cells

  • Boo, Sun-Jin;Piao, Mei Jing;Kang, Kyoung Ah;Zhen, Ao Xuan;Fernando, Pincha Devage Sameera Madushan;Herath, Herath Mudiyanselage Udari Lakmini;Lee, Seung Joo;Song, Seung Eun;Hyun, Jin Won
    • Biomolecules & Therapeutics
    • /
    • v.30 no.5
    • /
    • pp.447-454
    • /
    • 2022
  • Few studies have evaluated the role of autophagy in the development of oxaliplatin (OXT) resistance in colon cancer cells. In this study, we compared the role of autophagy between SNU-C5 colon cancer cells and OXT-resistant SNU-C5 (SNU-C5/OXTR) cells. At the same concentration of OXT, the cytotoxicity of OXT or apoptosis was significantly reduced in SNU-C5/OXTR cells compared with that in SNU-C5 cells. Compared with SNU-C5 cells, SNU-C5/OXTR cells exhibited low levels of autophagy. The expression level of important autophagy proteins, such as autophagy-related protein 5 (Atg5), beclin-1, Atg7, microtubule-associated proteins 1A/1B light chain 3B I (LC3-I), and LC3-II, was significantly lower in SNU-C5/OXTR cells than that in SNU-C5 cells. The expression level of the autophagy-essential protein p62 was also lower in SNU-C5/OXTR cells than in SNU-C5 cells. In SNU-C5/OXTR cells, the production of intracellular reactive oxygen species (ROS) was significantly higher than that in SNU-C5 cells, and treatment with the ROS scavenger N-acetylcysteine restored the reduced autophagy levels. Furthermore, the expression of antioxidant-related nuclear factor erythroid 2-related factor 2 transcription factor, heme oxygenase-1, and Cu/Zn superoxide dismutase were also significantly increased in SNU-C5/OXTR cells. These findings suggest that autophagy is significantly reduced in SNU-C5/OXTR cells compared with SNU-C5 cells, which may be related to the production of ROS in OXT-resistant cells.

Stewartia pseudocamellia and Torilis japonica Extracts Inhibit RANKL-induced Osteoclastogenesis in RAW 264.7 Cells

  • Anh-Thu Nguyen;Chun Soo Na;Ki-Young Kim
    • Journal of the Korean Chemical Society
    • /
    • v.67 no.2
    • /
    • pp.120-128
    • /
    • 2023
  • Osteoporosis is a disease that causes the weakening of bone by increasing porosity, which often results in fractures. Osteoporosis treatment measures include the use of Bisphosphonates and estrogen. However, these treatments cannot be used in the long term as these treatments have adverse side effects. Therefore, there is a need to identify better and safer treatment options. For this, 63 plant extracts were screened and among them, six extracts showed high anti-osteoclastic activity with low cytotoxicity. Of these six extracts, three extracts, Cudrania tricuspidata (P371), Ulmus davidiana var. japonica (P401), and Torilis japonica (P411), showed more than 50 percent osteoclast inhibition. While the remaining, Stewartia pseudocamellia extracts I and II (P370, P397) and Cuscuta chinensis (P418), showed moderate or between 40-50 percent osteoclast inhibition. Among all the extracts, Torilis japonica (P411) showed the highest inhibitory action against osteoclast development. Torilis japonica (P411) primary components include Kaempferol, Quercetin, and Luteolin, all proven to inhibit osteoclastogenesis. Stewartia pseudocamellia extracts I and II (P370 and P397) showed moderate or 44% osteoclast inhibition. Stewartia pseudocamellia extract II (P397) enhanced the growth of RAW 264.7 cells by 19%. Torilis japonica (P411) and Stewartia pseudocamellia extract II (P397) suppressed the expression of osteoclast-specific genes in RANKL-induced osteoclastogenesis in RAW 246.7 cells. Torilis japonica (P411) extracts even increased osteoblast-specific RUNX2 gene expression. This results provide that six extracts could be used as a potential treatment option for osteoporosis disease with the extracts of Torilis japonica (P411) and Stewartia pseudocamellia (P397) as an ideal candidates. However, the combination of the extract with higher osteoclastic inhibition and less toxic effects with further analysis should be recommended.