Browse > Article
http://dx.doi.org/10.4062/biomolther.2022.028

Comparative Study of Autophagy in Oxaliplatin-Sensitive and Resistant SNU-C5 Colon Cancer Cells  

Boo, Sun-Jin (Department of Internal Medicine, Jeju National University Hospital, College of Medicine, Jeju National University)
Piao, Mei Jing (Department of Biochemistry, College of Medicine, Jeju National University)
Kang, Kyoung Ah (Department of Biochemistry, College of Medicine, Jeju National University)
Zhen, Ao Xuan (Department of Biochemistry, College of Medicine, Jeju National University)
Fernando, Pincha Devage Sameera Madushan (Department of Biochemistry, College of Medicine, Jeju National University)
Herath, Herath Mudiyanselage Udari Lakmini (Department of Biochemistry, College of Medicine, Jeju National University)
Lee, Seung Joo (Department of Biochemistry, College of Medicine, Jeju National University)
Song, Seung Eun (Department of Anesthesiology, Jeju National University Hospital, College of Medicine, Jeju National University)
Hyun, Jin Won (Department of Biochemistry, College of Medicine, Jeju National University)
Publication Information
Biomolecules & Therapeutics / v.30, no.5, 2022 , pp. 447-454 More about this Journal
Abstract
Few studies have evaluated the role of autophagy in the development of oxaliplatin (OXT) resistance in colon cancer cells. In this study, we compared the role of autophagy between SNU-C5 colon cancer cells and OXT-resistant SNU-C5 (SNU-C5/OXTR) cells. At the same concentration of OXT, the cytotoxicity of OXT or apoptosis was significantly reduced in SNU-C5/OXTR cells compared with that in SNU-C5 cells. Compared with SNU-C5 cells, SNU-C5/OXTR cells exhibited low levels of autophagy. The expression level of important autophagy proteins, such as autophagy-related protein 5 (Atg5), beclin-1, Atg7, microtubule-associated proteins 1A/1B light chain 3B I (LC3-I), and LC3-II, was significantly lower in SNU-C5/OXTR cells than that in SNU-C5 cells. The expression level of the autophagy-essential protein p62 was also lower in SNU-C5/OXTR cells than in SNU-C5 cells. In SNU-C5/OXTR cells, the production of intracellular reactive oxygen species (ROS) was significantly higher than that in SNU-C5 cells, and treatment with the ROS scavenger N-acetylcysteine restored the reduced autophagy levels. Furthermore, the expression of antioxidant-related nuclear factor erythroid 2-related factor 2 transcription factor, heme oxygenase-1, and Cu/Zn superoxide dismutase were also significantly increased in SNU-C5/OXTR cells. These findings suggest that autophagy is significantly reduced in SNU-C5/OXTR cells compared with SNU-C5 cells, which may be related to the production of ROS in OXT-resistant cells.
Keywords
Autophagy; Oxaliplatin; Oxaliplatin-resistant SNU-C5 cells; Reactive oxygen species; Colon cancer;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Wang, Y., Zhang, D., Li, Y. and Fang, F. (2020) MiR-138 suppresses the PDK1 expression to decrease the oxaliplatin resistance of colorectal cancer. Onco. Targets Ther. 13, 3607-3618.   DOI
2 Yao, C. W., Kang, K. A., Piao, M. J., Ryu, Y. S., Fernando, P. M. D. J., Oh, M. C., Park, J. E., Shilnikova, K., Na, S. Y., Jeong, S. U., Boo, S. J. and Hyun, J. W. (2017) Reduced autophagy in 5-fluorouracil resistant colon cancer cells. Biomol. Ther. (Seoul) 25, 315-320.   DOI
3 Ray, B., Gupta, B. and Mehrotra, R. (2019) Binding of platinum derivative, oxaliplatin to deoxyribonucleic acid: structural insight into antitumor action. J. Biomol. Struct. Dyn. 37, 3838-3847.   DOI
4 Kang, K. A., Piao, M. J., Ryu, Y. S., Kang, H. K., Chang, W. Y., Keum, Y. S. and Hyun, J. W. (2016) Interaction of DNA demethylase and histone methyltransferase upregulates Nrf2 in 5-fluorouracil-resistant colon cancer cells. Oncotarget 7, 40594-40620.   DOI
5 Ku, J. L. and Park, J. G. (2005) Biology of SNU cell lines. Cancer Res. Treat. 37, 1-19.   DOI
6 Kornmann, M., Fakler, H., Butzer, U., Beger, H. G. and Link, K. H. (2000) Oxaliplatin exerts potent in vitro cytotoxicity in colorectal and pancreatic cancer cell lines and liver metastases. Anticancer Res. 20, 3259-3264.
7 Koustas, E., Sarantis, P., Theoharis, S., Saetta, A. A., Chatziandreou, I., Kyriakopoulou, G., Giannopoulou, I., Michelli, M., Schizas, D., Papavassiliou, A. G. and Karamouzis, M. V. (2019) Autophagy-related proteins as a prognostic factor of patients with colorectal cancer. Am. J. Clin. Oncol. 42, 767-776.   DOI
8 Lee, J. H., Yoon, Y. M., Han, Y. S., Yun, C. W. and Lee, S. H. (2018) Melatonin promotes apoptosis of oxaliplatin-resistant colorectal cancer cells through inhibition of cellular prion protein. Anticancer Res. 38, 1993-2000.
9 Li, X., He, S. and Ma, B. (2020) Autophagy and autophagy-related proteins in cancer. Mol. Cancer 19, 12.
10 Martinez-Balibrea, E., Martinez-Cardus, A., Gines, A., Ruiz de Porras, V., Moutinho, C., Layos, L., Manzano, J. L., Buges, C., Bystrup, S., Esteller, M. and Abad, A. (2015) Tumor-related molecular mechanisms of oxaliplatin resistance. Mol. Cancer Ther. 14, 1767-1776.   DOI
11 Shiragami, R., Murata, S., Kosugi, C., Tezuka, T., Yamazaki, M., Hirano, A., Yoshimura, Y., Suzuki, M., Shuto, K. and Koda, K. (2013) Enhanced antitumor activity of cerulenin combined with oxaliplatin in human colon cancer cells. Int. J. Oncol. 43, 431-438.   DOI
12 Lin, L., Li, X., Pan, C., Lin, W., Shao, R., Liu, Y., Zhang, J., Luo, Y., Qian, K., Shi, M., Bin, J., Liao, Y. and Liao, W. (2019) ATXN2L upregulated by epidermal growth factor promotes gastric cancer cell invasiveness and oxaliplatin resistance. Cell Death Dis. 10, 173.
13 Ornatowski, W., Lu, Q., Yegambaram, M., Garcia, A. E., Zemskov, E. A., Maltepe, E., Fineman, J. R., Wang, T. and Black, S. M. (2020) Complex interplay between autophagy and oxidative stress in the development of pulmonary disease. Redox Biol. 36, 101679.
14 Mizushima, N. (2020) The ATG conjugation systems in autophagy. Curr. Opin. Cell Biol. 63, 1-10.   DOI
15 Piao, M. J., Kang, K. A., Zhen, A. X., Fernando, P. D. S. M., Ahn, M. J., Koh, Y. S., Kang, H. K., Yi, J. M., Choi, Y. H. and Hyun, J. W. (2019) Particulate matter 2.5 mediates cutaneous cellular injury by inducing mitochondria-associated endoplasmic reticulum stress: protective effects of ginsenoside Rb1. Antioxidants 8, 383.
16 Rand, A., Glenn, K. S., Alvares, C. P., White, M. B., Thibodeau, S. M. and Karnes, W. E., Jr. (1996) p53 functional loss in a colon cancer cell line with two missense mutations (218leu and 248trp) on separate alleles. Cancer Lett. 98, 183-191.
17 Steinmetz, T. D., Schlotzer-Schrehardt, U., Hearne, A., Schuh, W., Wittner, J., Schulz, S. R., Winkler, T. H., Jack, H. M. and Mielenz, D. (2021) TFG is required for autophagy flux and to prevent endoplasmic reticulum stress in CH12 B lymphoma cells. Autophagy 17, 2238-2256.   DOI
18 Xie, Q., Liu, Y. and Li, X. (2020) The interaction mechanism between autophagy and apoptosis in colon cancer. Transl. Oncol. 12, 100871.
19 Huang, H., Aladelokun, O., Ideta, T., Giardina, C., Ellis, L. M. and Rosenberg, D. W. (2019) Inhibition of PGE2/EP4 receptor signaling enhances oxaliplatin efficacy in resistant colon cancer cells through modulation of oxidative stress. Sci. Rep. 9, 4954.
20 Cernigliaro, C., D'Anneo, A., Carlisi, D., Giuliano, M., Gammazza, A. M., Barone, R., Longhitano, L., Cappello, F., Emanuele, S., Distefano, A., Campanella, C., Calvaruso, G. and Lauricella, M. (2019) Ethanol-mediated stress promotes autophagic survival and aggressiveness of colon cancer cells via activation of Nrf2/HO-1 pathway. Cancers (Basel) 11, 505.
21 Galadari, S., Rahman, A., Pallichankandy, S. and Thayyullathil, F. (2017) Reactive oxygen species and cancer paradox: to promote or to suppress? Free Radic. Biol. Med. 104, 144-164.   DOI
22 Fan, C., Wang, W., Zhao, B., Zhang, S. and Miao, J. (2006) Chloroquine inhibits cell growth and induces cell death in A549 lung cancer cells. Bioorg. Med. Chem. 14, 3218-3222.   DOI
23 Xue, D. F., Pan, S. T., Huang, G. and Qiu, J. X. (2020) ROS enhances the cytotoxicity of cisplatin by inducing apoptosis and autophagy in tongue squamous cell carcinoma cells. Int. J. Biochem. Cell Biol. 122, 105732.
24 Yim, W. W. and Mizushima, N. (2020) Lysosome biology in autophagy. Cell Discov. 6, 6.
25 Yun, C. W. and Lee, S. H. (2018) The roles of autophagy in cancer. Int. J. Mol. Sci. 19, 3466.
26 Auclin, E., Zaanan, A., Vernerey, D., Douard, R., Gallois, C., Laurent-Puig, P., Bonnetain, F. and Taieb, J. (2017) Subgroups and prognostication in stage III colon cancer: future perspectives for adjuvant therapy. Ann. Oncol. 28, 958-968.   DOI
27 Chen, R. H., Chen, Y. H. and Huang, T. Y. (2019) Ubiquitin-mediated regulation of autophagy. J. Biomed. Sci. 26, 80.
28 Guan, Y., Zhou, L., Zhang, Y., Tian, H., Li, A. and Han, X. (2019) Effects of PP2A/Nrf2 on experimental diabetes mellitus-related cardiomyopathy by regulation of autophagy and apoptosis through ROS dependent pathway. Cell. Signal. 62, 109339.
29 Holohan, C., Van Schaeybroeck, S., Longley, D. B. and Johnston, P. G. (2013) Cancer drug resistance: an evolving paradigm. Nat. Rev. Cancer 13, 714-726.   DOI
30 Jeong, S., Kim, D. Y., Kang, S. H., Yun, H. K., Kim, J. L., Kim, B. R., Park, S. H., Na, Y. J., Jo, M. J., Jeong, Y. A., Kim, B. G., Lee, D. H. and Oh, S. C. (2019) Docosahexaenoic acid enhances oxaliplatin-induced autophagic cell death via the ER stress/Sesn2 pathway in colorectal cancer. Cancers (Basel) 11, 982.
31 Jung, G. R., Kim, K. J., Choi, C. H., Lee, T. B., Han, S. I., Han, H. K. and Lim, S. C. (2007) Effect of betulinic acid on anticancer drug-resistant colon cancer cells. Basic. Clin. Pharmacol. Toxicol. 101, 277-285.   DOI
32 Alcindor, T. and Beauger, N. (2011) Oxaliplatin: a review in the era of molecularly targeted therapy. Curr. Oncol. 18, 18-25.   DOI