• Title/Summary/Keyword: low contrast resolution

Search Result 140, Processing Time 0.04 seconds

Tx/Rx Bidirectional Beamforming Using Multi - Element Defocusing (Multi-Element Defocusing을 이용한 Tx/Rx 양방향 빔포밍)

  • Lee, Y.H.;Hwang, J.S.;Song, T.K.;Ahn, Y.B.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1998 no.11
    • /
    • pp.219-220
    • /
    • 1998
  • Although a single-element synthetic aperture system can produce high-resolution beam profile, it is not a highly practical system because of its low signal to noise ratio against conventional system's. A multi-element synthetic aperture processing has been proposed with defocusing in this paper. A multi element subaperture defocused to emulate a single element spatial response with high acoustic power. The results have higher signal to noise and better contrast resolution than conventional synthetic aperture method.

  • PDF

A Low Frequency Band Watermarking with Weighted Correction in the Combined Cosine and Wavelet Transform Domain

  • Deb, Kaushik;Al-Seraj, Md. Sajib;Chong, Ui-Pil
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.14 no.1
    • /
    • pp.13-20
    • /
    • 2013
  • A combined DWT and DCT based watermarking technique of low frequency watermarking with weighted correction is proposed. The DWT has excellent spatial localization, frequency spread and multi-resolution characteristics, which are similar to the theoretical models of the human visual system (HVS). The DCT based watermarking techniques offer compression while DWT based watermarking techniques offer scalability. These desirable properties are used in this combined watermarking technique. In the proposed method watermark bits are embedded in the low frequency band of each DCT block of selected DWT sub-band. The weighted correction is also used to improve the imperceptibility. The extracting procedure reverses the embedding operations without the reference of the original image. Compared with the similar approach by DCT based approach and DWT based approach, the experimental results show that the proposed algorithm apparently preserves superiori mage quality and robustness under various attacks such as JPEG compression, cropping, sharping, contrast adjustments and so on.

Study on Defects in 2D Materials using Atomic Resolution TEM

  • Ryu, Gyeong-Hui;Park, Hyo-Ju;Kim, Jeong-Hwa;Kim, Na-Yeon;Lee, Jong-Yeong;Lee, Jong-Hun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.87.1-87.1
    • /
    • 2016
  • The unique properties of 2D materials significantly rely on the atomic structure and defects. Thus study at atomic scale is crucial for in-depth understanding of 2D materials and provides insights into its future applications. Using aberration-corrected transmission electron microscopes, atomic resolution imaging of individual atoms has been achieved even at a low kV. Ongoing optimization of aberration correction improves the spatial resolution better than angstrom and moreover boosts the contrast of light atoms. I present the recent progress of the study on the atomic structure and defects of monolayer and multilayer graphene, hBN and MoS2. Furthermore, the defect formation mechanisms of graphene, hexagonal boron nitride and MoS2 are discussed.

  • PDF

Spatial Downscaling of MODIS Land Surface Temperature: Recent Research Trends, Challenges, and Future Directions

  • Yoo, Cheolhee;Im, Jungho;Park, Sumin;Cho, Dongjin
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.4
    • /
    • pp.609-626
    • /
    • 2020
  • Satellite-based land surface temperature (LST) has been used as one of the major parameters in various climate and environmental models. Especially, Moderate Resolution Imaging Spectroradiometer (MODIS) LST is the most widely used satellite-based LST product due to its spatiotemporal coverage (1 km spatial and sub-daily temporal resolutions) and longevity (> 20 years). However, there is an increasing demand for LST products with finer spatial resolution (e.g., 10-250 m) over regions such as urban areas. Therefore, various methods have been proposed to produce high-resolution MODIS-like LST less than 250 m (e.g., 100 m). The purpose of this review is to provide a comprehensive overview of recent research trends and challenges for the downscaling of MODIS LST. Based on the recent literature survey for the past decade, the downscaling techniques classified into three groups-kernel-driven, fusion-based, and the combination of kernel-driven and fusion-based methods-were reviewed with their pros and cons. Then, five open issues and challenges were discussed: uncertainty in LST retrievals, low thermal contrast, the nonlinearity of LST temporal change, cloud contamination, and model generalization. Future research directions of LST downscaling were finally provided.

Development of deep learning network based low-quality image enhancement techniques for improving foreign object detection performance (이물 객체 탐지 성능 개선을 위한 딥러닝 네트워크 기반 저품질 영상 개선 기법 개발)

  • Ki-Yeol Eom;Byeong-Seok Min
    • Journal of Internet Computing and Services
    • /
    • v.25 no.1
    • /
    • pp.99-107
    • /
    • 2024
  • Along with economic growth and industrial development, there is an increasing demand for various electronic components and device production of semiconductor, SMT component, and electrical battery products. However, these products may contain foreign substances coming from manufacturing process such as iron, aluminum, plastic and so on, which could lead to serious problems or malfunctioning of the product, and fire on the electric vehicle. To solve these problems, it is necessary to determine whether there are foreign materials inside the product, and may tests have been done by means of non-destructive testing methodology such as ultrasound ot X-ray. Nevertheless, there are technical challenges and limitation in acquiring X-ray images and determining the presence of foreign materials. In particular Small-sized or low-density foreign materials may not be visible even when X-ray equipment is used, and noise can also make it difficult to detect foreign objects. Moreover, in order to meet the manufacturing speed requirement, the x-ray acquisition time should be reduced, which can result in the very low signal- to-noise ratio(SNR) lowering the foreign material detection accuracy. Therefore, in this paper, we propose a five-step approach to overcome the limitations of low resolution, which make it challenging to detect foreign substances. Firstly, global contrast of X-ray images are increased through histogram stretching methodology. Second, to strengthen the high frequency signal and local contrast, we applied local contrast enhancement technique. Third, to improve the edge clearness, Unsharp masking is applied to enhance edges, making objects more visible. Forth, the super-resolution method of the Residual Dense Block (RDB) is used for noise reduction and image enhancement. Last, the Yolov5 algorithm is employed to train and detect foreign objects after learning. Using the proposed method in this study, experimental results show an improvement of more than 10% in performance metrics such as precision compared to low-density images.

Influence of Iodinated Contrast Media and Paramagnetic Contrast Media on Changes in Uptake Counts of 99mTc

  • Cho, Jae-Hwan;Lee, Jin-Hyeok;Park, Cheol-Soo;Lee, Sun-Yeob;Lee, Jin;Moon, Deog-Hwan;Lee, Hae-Kag
    • Journal of Magnetics
    • /
    • v.19 no.3
    • /
    • pp.248-254
    • /
    • 2014
  • The purpose of this study is to figure out how uptake counts of technetium ($^{99m}Tc$) among radioisotopes in the human body are affected if computed tomography (CT), magnetic resonance imaging (MRI) and isotope examination are performed consecutively. $^{99m}Tc$ isotope material, iodinated contrast media for CT and paramagnetic contrast media for magnetic resonance (MR) were used as experimental materials. First, $^{99m}Tc$ was added to 4 cc normal saline in a test tube. Then, 2 cc of CT contrast media such as $Iopamidol^{(R)}$ and $Dotarem^{(R)}$ were diluted with 2 cc normal saline, and 2cc of MRI contrast media such as $Primovist^{(R)}$ and $Gadovist^{(R)}$ were diluted with 2 cc normal saline. Each distributed contrast media was a total of 4 cc and included 10m Ci of $^{99m}Tc$. A gamma camera, a LEHR (Low energy high resolution) collimator and a pin-hole collimator were used for image acquisition. Image acquisition was repeated a total of 6 times and 120 frames were obtained and uptake counts of $^{99m}Tc$ were measured (from this procedure). In this study, as a result of measuring the uptake counts of $^{99m}Tc$ using the LEHR collimator, the uptake counts were less measured in all contrast media than normal saline as a reference. In particular, the lowest uptake counts were measured when $Gadovist^{(R)}$, contrast media for MRI, was used. However, the result of measuring the uptake counts of $^{99m}Tc$ using the pin-hole collimator showed higher uptake counts in all contrast media, except for $Iopamidol^{(R)}$, than normal saline as a reference. The highest uptake counts were measured particularly when $Primovist^{(R)}$, contrast media for MRI, was used. In performing the gamma camera examination using contrast media and $^{99m}Tc$, it is considered significant to check the changes in the uptake counts to improve various diagnosis values.

Infrared Imaging and a New Interpretation on the Reverse Contrast Images in GaAs Wafer (GaAs 웨이퍼의 적외선 영상기법 및 콘트라스트 반전 영상에 대한 새로운 해석)

  • Kang, Seong-jun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.11
    • /
    • pp.2085-2092
    • /
    • 2016
  • One of the most important properties of the IC substrate is that it should be uniform over large areas. Among the various physical approaches of wafer defect characterization, special attention is to be payed to the infrared techniques of inspection. In particular, a high spatial resolution, near infrared absorption method has been adopted to directly observe defects in semi-insulating GaAs. This technique, which relies on the mapping of infrared transmission, is both rapid and non-destructive. This method demonstrates in a direct way that the infrared images of GaAs crystals arise from defect absorption process. A new interpretation is presented for the observed reversal of contrast in the infrared absorption of nonuniformly distributed deep centers, related to EL2, in semi-insulating GaAs. The low temperature photoquenching experiment has demonstrated in a direct way that the contrast inverse images of GaAs wafers arise from both absorption and scattering mechanisms rather than charge re-distribution or local variation of bandgap.

Effect of High Tube Voltage and Scatter Ray Post-processing Software on Image Quality and Radiation Dose During Chest Anteroposterior Radiography (흉부 전·후방향 검사 시 고관전압 및 산란선 후처리 소프트웨어 적용이 화질과 선량에 미치는 영향)

  • Kim, Jong-Seok;Joo, Young-Cheol;Lee, Seung-Keun
    • Journal of radiological science and technology
    • /
    • v.44 no.4
    • /
    • pp.295-300
    • /
    • 2021
  • This study aims to present new chest AP examination exposure conditions through a study on the effect on image quality and patient dose by applying high tube voltage and scatter ray post-processing software during chest AP examination in digital radiography equipment. This study was used a human body phantom and in the chest AP position, the dosimeter was placed horizontally at the thoracic spine 6. The experiment was conducted by dividing into a low tube voltage (70 kVp, 400 mA, 3.2 mAs) group and a high tube voltage (100 kVp, 400 mA, 1.2 mAs) group. The collimation size (14″× 17″) and the source to image receptor distance(110 cm) were same applied to both groups. Radiation dose was presented to dose area product and entrance surface dose. Image quality was compared and analyzed by comparing the difference between the signal-to-noise ratio and the contrast-to-noise ratio of the image according to the application of the scatter ray post-processing software under each condition. The average value of the entrance surface dose in the low and high tube voltage conditions was 93.04±0.45 µGy and 94.25±1.51 µGy, which was slightly higher in the high tube voltage condition, but the dose area product was 0.97±0.04 µGy and 0.93±0.01 µGy. There was a statistically significant difference in the group mean value(p<0.01). In terms of image quality, the values of the signal-to-noise ratio and the contrast noise ratio were higher in the high tube voltage than in the low tube voltage, and decreased when the scattering line post-processing function was used, but the contrast resolution was improved. If there is a scatter ray post-processing function during chest AP examination, it is helpful to actively utilize it to improve the image quality. However, when this function is not available, I thought that applying a higher tube voltage state than a low tube voltage state will help to realize images with a large amount of information without changing the dose.

Method of Using Human Visual Characteristics Based Optimized LED Backlight Control for Power Saving LED TV (시각 인지 적응 기반의 저전력 LED TV의 백라이트 구동 최적화 설계 기술)

  • Jung, Hye-Dong
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 2009.08a
    • /
    • pp.86-87
    • /
    • 2009
  • LED backlight for LCD TV is a great alternative to CCFL backlight due to its low power consumption and flexible arrangement. Various LED backlight configurations are being used to control the backlight locally in order to achieve both power efficiency and high contrast. However, the relatively small spatial resolution of the backlight system results in showing artifacts of backlight control that is acknowledgeable to human vision. Moreover, such artifacts get worse between temporal frames. In this paper we present a method of decreasing such temporal artifacts with a Human Visual System(HVS) approach to minimize distortion caused by local backlight dimming.

  • PDF

Recognition of character images with low-resolution and low-contrast using an associative memory (연상메모리를 이용한 저해상도 및 저대비 문자 영상 인식)

  • 정찬호;김대철;김경환
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2004.04b
    • /
    • pp.760-762
    • /
    • 2004
  • 본 논문에서는 저해상도 및 저대비의 특성을 지니는 문자 영상으로부터 특징을 추출하고 연상메모리를 이용하여 대상 문자를 인식하는 방법을 소개한다. 저해상도 영상의 이진화 과정에서 발생할 수 있는 정보의 왜곡 현상을 피하기 위하여 입력 영상의 gradient 정보를 이용하여 특징을 추출한다 저해상도 일 저대비의 특성을 지니는 문자 영상의 경우 입력 영상에 noise가 존재하거나 충분한 정보가 포함되어 있지 않은 경우 특징벡터에 상당한 왜곡을 초래하게 된다. 손상된 특징을 복원하기 위하여 연상메모리를 이용한다. 인식하고자 하는 문자 영상들의 prototype 영상들을 이용하여 연상메모리의 weight matrix를 구성한다. weight matrix를 이용해서 입력 영상이 가지는 특징과 가장 비슷한 특징을 가지는 prototype 영상의 특징벡터를 생성함으로써 손상된 특징을 복원하게 된다. 제안된 시스템을 이용하여 실험한 결과 noise가 존재하거나 정보가 충분하지 않은 입력 영상에 대해서 비교적 놀은 인식률을 얻음을 볼 수 있었다.

  • PDF