• Title/Summary/Keyword: low contrast resolution

Search Result 137, Processing Time 0.027 seconds

Analysis of Effectiveness of Spectrum of Energy and Image Quality Evaluation by Aluminium Filter in the added Compound Filtration (에너지 스펙트럼과 화질평가를 통한 복합부가여과에서 알루미늄 여과판의 효율성 분석)

  • Kim, Sang-Hyun;Choi, Jae-Ho
    • Journal of radiological science and technology
    • /
    • v.38 no.3
    • /
    • pp.187-197
    • /
    • 2015
  • This study analysed the effectiveness of aluminium(Al) filter in the added compound filtration for the removal of characteristic radiation by energy spectrum and image evaluation. 0.1, 0.2, 0.3 mm copper with and without 1 mm Al were evaluated. The energy spectrum was measured using the GATE and evaluated separately by each energy. Image quality was evaluated by PSNR, MAE, MSE, CNR, SNR and qualitative analysis was performed by seven items for resolution and contrast from chest x-ray criteria of National Cancer Screening and Cardiovascular evaluation table. In the analysis of the quality of the energy per photon spectrum with the exception of a low energy region, without Al were superior in all area. PSNR MAE, MSE, CNR, SNR and qualitative analysis were the same or slightly better. PSNR was over 30 dB and all significant and the p>0.05 in the T-test of qualitative analysis. The energy spectrum and image quality have little difference between before and after use of Al filter. Therefore, it is effective to use the Al filter for the radiation dose management with the compensation capability of DR system.

Quantitative Evaluation of Image Quality using Automatic Exposure Control & Sensitivity in the Digital Chest Image (디지털 흉부영상에서 자동노출제어 및 감도변화를 이용한 영상품질의 정량적인 평가)

  • Lee, Jin-Soo;Ko, Seong-Jin;Kang, Se-Sik;Kim, Jung-Hoon;Kim, Dong-Hyun;Kim, Changsoo
    • The Journal of the Korea Contents Association
    • /
    • v.13 no.8
    • /
    • pp.275-283
    • /
    • 2013
  • The patient radiation dose is different depending on selection of Ion chamber when taking Chest PA which using AEC. In this paper, we studied acquiring the best diagnostic images according to selection of Ion chamber on AEC mode as well as minimizing patient radiation dose. Experimental methods were selection of Ion chamber and change of sensitivity under the same conditions as Chest PA projection. At AEC mode, two upper ion chambers sensors and one lower ion chamber sensor were divided into 7 cases according to selection of on/off. after measuring five times respectively, we obtained average value and calculated exposure dose. Image assessment was done with measured Modulation Transfer Function, Peak Signal to Noise Ratio, Root Mean Square, Signal to Noise Ratio, Contrast to Noise Ratio, Mean to Standard deviation Ratio respectively. In exposure assessment results, selection of two upper chambers was the lowest. In resolution assessment results, image of two upper chambers had the second high spatial frequency at sensitivity at 625(High) was 1.343 lp/mm. RMS value of image selecting two upper chambers was low secondly. SNR, CNR, MSR were the high value secondly. As the sensitivity was increased, radiation dose was decreased but better image could be obtained on image quality. In order to obtain the best medical images while minimizing the dose, usage of two upper ion chambers is considered to be clinically useful at sensitivity 625(High).

Usefulness Assessment of Automatic Analysis Program for Flangeless Esser PET Phantom Images (Flangeless Esser PET Phantom 영상 자동 분석 프로그램의 유용성 평가)

  • NamGung, Chang-Kyeong;Nam, Ki-Pyo;Kim, Kyeong-Sik;Kim, Jeong-Seon;Lim, Ki-Cheon;Shin, Sang-Ki;Cho, Shee-Man;Dong, Kyung-Rae
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.13 no.1
    • /
    • pp.63-66
    • /
    • 2009
  • Purpose: ACR (American College of Radiology) offers variable parameters to PET/CT quality control by using ACR Phantom. ACR Phantom was made to evaluate parameters which are uniformity, attenuation, scatter, contrast and resolution. Manual analysis method wasn't good for the use of QC because values of parameter were changed as it may user and it takes long time to analysis. Ki-Chun Lim, a nuclear scientist in AMC, developed program that automatically analysis values of parameter by using ACR Phantom to overcome above problems. In this study, we evaluated automatic analysis program's usability, through the comparing SUV of each method, reproducibility of SUV when repeated analysis and the time required. Materials and Methods: Using Flangeless Esser PET Phantom, the ideal ratio of 4 : 1 hot cylinder and BKG but it actually showed a ratio of 3.89 to 1 hot cylinder and BKG. SIEMENS Biograph True Point 40 was used in this study. We obtained images using ACR phantom at Fusion WB PET Scan condition (2 min/bed) and 120 kV, 100 mAs CT condition. Using True X method, 3 iterations, 14 subsets, Gaussian filter, FWHM 4 mm and Zoom Factor 1.0, $168{\times}168$ image size. We obtained Max. & Min. SUV and SUV Mean values at Cylinder (8, 12, 16, 25 mm, Air, Bone, Water, BKG) by automatic program and obtained SUV by manual method. After that, we compared manual and automatic method. we estimate the time required from opened the image data to final work sheet was completed. Results: Automatic program always showed same result and same the time required. At 8, 12, 16 and 25 m cylinder, manual method showed 6.69, 3.46, 2.59, 1.24 CV values. The larger cylinder size became, the smaller CV became. In manual method, bone, air, water's CV were over 9.9 except BKG (2.32). Obtained CV of Mean SUV showed BKG was low (0.85) and bone was high (7.52). The time required was 45 second, 882 second respectably. Conclusions: As a result of difference automatic method and manual method, automatic method showed always same result, manual method showed that the smaller hot cylinders became, the lager CV became. Hot cylinders mean region size, the smaller hot cylinder size becomes we had some trouble in doing ROI poison setting. And it means increase in variation of SUV. The Study showed the time required of automatic method was shorten then manual method.

  • PDF

Review on asbestos analysis (석면 분석방법에 대한 고찰)

  • Ham, Seung hon;Hwang, Sung Ho;Yoon, Chungsik;Park, Donguk
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.19 no.3
    • /
    • pp.213-232
    • /
    • 2009
  • This document was prepared to review and summarize the analytical methods for airborne and bulk asbestos. Basic principles, shortcomings and advantages for asbestos analytical instruments using phase contrast microscopy(PCM), polarized light microscopy(PLM), X-ray diffractometer (XRD), transmission electron microscopy(TEM), scanning electron microscopy(SEM) were reviewed. Both PCM and PLM are principal instrument for airborne and bulk asbestos analysis, respectively. If needed, analytical electron microscopy is employed to confirm asbestos identification. PCM is used originally for workplace airborne asbestos fiber and its application has been expanded to measure airborne fiber. Shortcoming of PCM is that it cannot differentiate true asbestos from non asbestos fiber form and its low resolution limit ($0.2{\sim}0.25{\mu}m$). The measurement of airborne asbestos fiber can be performed by EPA's Asbestos Hazard Emergency Response Act (AHERA) method, World Health Organization (WHO) method, International Standard Organization (ISO) 10312 method, Japan's Environmental Asbestos Monitoring method, and Standard method of Indoor Air Quality of Korea. The measurement of airborne asbestos fiber in workplace can be performed by National Institute for Occupational Safety and Health (NIOSH) 7400 method, NIOSH 7402 method, Occupational Safety and Health Administration (OSHA) ID-160 method, UK's Health and Safety Executive(HSE) Methods for the determination of hazardous substances (MDHS) 39/4 method and Korea Occupational Safety and Health Agency (KOSHA) CODE-A-1-2004 method of Korea. To analyze the bulk asbestos, stereo microscope (SM) and PLM is required by EPA -600/R-93/116 method. Most bulk asbestos can be identified by SM and PLM but one limitation of PLM is that it can not see very thin fiber (i.e., < $0.25{\mu}m$). Bulk asbestos analytical methods, including EPA-600/M4-82-020, EPA-600/R-93/116, OSHA ID-191, Laboratory approval program of New York were reviewed. Also, analytical methods for asbestos in soil, dust, water were briefly discussed. Analytical electron microscope, a transmission electron microscope equipped with selected area electron diffraction (SAED) and energy dispersive X-ray analyser(EDXA), has been known to be better to identify asbestiform than scanning electron microscope(SEM). Though there is no standard SEM procedures, SEM is known to be more suitable to analyze long, thin fiber and more cost-effective. Field emission scanning electron microscope (FE-SEM) imaging protocol was developed to identify asbestos fiber. Although many asbestos analytical methods are available, there is no method that can be applied to all type of samples. In order to detect asbestos with confidence, all advantages and disadvantages of each instrument and method for given sample should be considered.

Portal Vein Thrombosis in a Dog with Dirofilariasis (심장사상충에 감염된 개에서 발생한 문정맥혈전증)

  • Yun, Seok-Ju;Cheon, Haeng-Bok;Han, Jae-Ik;Kang, Ji-Houn;Chang, Jin-Hwa;Na, Ki-Jeong;Chang, Dong-Woo
    • Journal of Veterinary Clinics
    • /
    • v.27 no.5
    • /
    • pp.600-604
    • /
    • 2010
  • A ten-year-old female mongrel dog was presented to Veterinary Medical Center, Chungbuk National University with the signs of anorexia, weakness, and hemoglobinuria. Patient had been diagnosed as dirofilariasis based on heartworm antigen test and treated with adulticide (melarsomine) at local hospital one day before admission. On laboratory examinations, there were hypochromic and microcytic regenerative anemia, thrombocytopenia, moderate neutrophilia, and increase ALT, AST, and ALP. Radiographic exam showed main pulmonary artery bulging, pulmonary infiltration and hypervascularity, reduced abdominal serosal detail and mild hepatomegaly. Abdominal ultrasonographic exam showed mild peritoneal effusion and large hyperechoic thrombi at trifurcation of the porta hepatica and the splenic vein. In addition, intraluminal low density area and intravascular filling defect were confirmed on contrast enhanced CT scanning at the same anatomic locations. Patient was treated with anticoagulant and thrombolytic therapy. On day 42 after treatment, complete resolution of thrombi was confirmed via ultrasonography and improvement of clinical signs was observed.

Seismic Amplitude and Frequency Characteristics of Gas hydrate Bearing Geologic Model (가스 하이드레이트 지층 모델의 탄성파 진폭 및 주파수 특성)

  • Shin, Sung-Ryul;Lee, Sang-Cheol;Park, Keun-Pil;Lee, Ho-Young;Yoo, Dong-Geun;Kim, Young-Jun
    • Geophysics and Geophysical Exploration
    • /
    • v.11 no.2
    • /
    • pp.116-126
    • /
    • 2008
  • In gas hydrate survey, seismic amplitude and frequency characteristics play a very important role in determining whether gas hydrate exists. According to the variation of source frequency and scatterer size, we study seismic amplitude characteristics using elastic modeling applied at staggered grids. Generally speaking, scattering occurs in proportion to the square of source frequency and the scatterer volume, which has an effect on seismic amplitude. The higher source frequency is, the more scattering occurs in gas hydrate bearing zone. Therefore, BSR is hardly observed in high frequencies. On the other side, amplitude blanking zone and BSR is clearly observed in lower frequencies although the resolution is poor as a whole. Seismic reflections traveling through free-gas layer below gas hydrate bearing zone decay so severely a high frequency component that a low frequency term is dominant. Amplitude anomaly of BSR result from high acoustic impedance contrast due to free-gas, which is a very crucial factor to estimate gas hydrate bearing zone. Seismic frequency analysis is carried out using wavelet transform method that frequency component could be decomposed with time variation. In application of wavelet transform to the seismic physical experiments data, we can observe that reflections traveling through air layer, which corresponds to the free-gas layer, decay a high frequency component.

Text Region Extraction from Videos using the Harris Corner Detector (해리스 코너 검출기를 이용한 비디오 자막 영역 추출)

  • Kim, Won-Jun;Kim, Chang-Ick
    • Journal of KIISE:Software and Applications
    • /
    • v.34 no.7
    • /
    • pp.646-654
    • /
    • 2007
  • In recent years, the use of text inserted into TV contents has grown to provide viewers with better visual understanding. In this paper, video text is defined as superimposed text region located of the bottom of video. Video text extraction is the first step for video information retrieval and video indexing. Most of video text detection and extraction methods in the previous work are based on text color, contrast between text and background, edge, character filter, and so on. However, the video text extraction has big problems due to low resolution of video and complex background. To solve these problems, we propose a method to extract text from videos using the Harris corner detector. The proposed algorithm consists of four steps: corer map generation using the Harris corner detector, extraction of text candidates considering density of comers, text region determination using labeling, and post-processing. The proposed algorithm is language independent and can be applied to texts with various colors. Text region update between frames is also exploited to reduce the processing time. Experiments are performed on diverse videos to confirm the efficiency of the proposed method.

Interpretation and Analysis of Seismic Crosshole Data: Case History (탄성파 토모그래피 단면측정 데이터 분석 및 해석: 현장응용 사례)

  • Kim Jung-Yul;Kim Yoo-Sung;Hyun Hye-Ja
    • Geophysics and Geophysical Exploration
    • /
    • v.1 no.1
    • /
    • pp.31-42
    • /
    • 1998
  • Recently crosshole seismic tomography has come to be widely used especially for the civil engineering, because it can provide more detail information than any other surface method, although the resolution of tomogram will be inevitably deteriorated to some extent due to the limited wavefield aperture on the nonuniqueness of traveltime inversion. In addition, our field sites often consist of a high-velocity bed rock overlain by low-velocity rock, sometimes with a contrast of more than 45 percent, and furthermore the bed rock is folded. The first arriving waves can be then the refracted ones that travel along the bed rock surface for some source/receiver distances. Thus, the desirable first arrivals can be easily misread that cause severe distortion of the resulting tomogram, if it is concerned with (straight ray) traveltime inversion procedure. In this case, comparision with synthetic data (forward modeling) is a valuable tool in the interpretation process. Besides, abundant information is contained in the crosshole data. For instance, examination of tube waves can be devoted to detecting discontinuities within the borehole such as breakouts, faults, fractures or shear zones as well as the end of the borehole. Specific frequency characteristics of marine silty mud will help discriminate from other soft rocks. The aim of this paper is to present several strategies to analyze and interpret the crosshole data in order to improve the ability at first to determine the spatial dimensions of interwell anomalies and furthermore to understand the underground structures. To this end, our field data are demonstrated. Possibility of misreading the first arrivals was illustrated. Tube waves were investigated in conjunction with the televiewer images. Use of shot- and receiver gathers was examined to benefit the detectabilities of discontinuities within the borehole.

  • PDF

Comparative Analysis of Src Activity in Plasma Membrane Subdomains via Genetically Encoded FRET Biosensors (유전적으로 암호화된 FRET 바이오센서를 통한 세포막 하위 도메인의 Src 활성 비교 분석)

  • Gyuho Choi;Yoon-Kwan Jang;Jung-Soo Suh;Heonsu Kim;Sanghyun Ahn;Tae-Jin Kim
    • Journal of Life Science
    • /
    • v.33 no.2
    • /
    • pp.191-198
    • /
    • 2023
  • As a member of the focal adhesion complex of the plasma membrane, Src is a nonreceptor tyrosine kinase that controls cell adhesion and motility. However, how Src activity is regulated in the plasma membrane microdomain in response to components of the extracellular matrix (ECM) remains unclear. This study compared and investigated the activity of Src in response to three representative ECM proteins: collagen type 1, fibronectin, and laminin. Genetically encoded FRET-based Src biosensors for plasma membrane subdomains were used. FRET-based biosensors allow the real-time analysis of protein activity in living cells based on their high spatiotemporal resolution. The results showed that Src activity was maintained at a high level under all ECM conditions of the lipid raft, and there was no significant difference between the ECM conditions. In contrast, Src activity was maintained at a low level in the non-lipid raft membrane. In addition, the Src activity of lipid rafts remained significantly higher than that of non-lipid raft regions under the same ECM conditions. In conclusion, this study demonstrates that Src activity can be controlled differently by lipid rafts and non-lipid raft microdomains.

High-resolution range and velocity estimation method based on generalized sinusoidal frequency modulation for high-speed underwater vehicle detection (고속 수중운동체 탐지를 위한 일반화된 사인파 주파수 변조 기반 고해상도 거리 및 속도 추정 기법)

  • Jinuk Park;Geunhwan Kim;Jongwon Seok;Jungpyo Hong
    • The Journal of the Acoustical Society of Korea
    • /
    • v.42 no.4
    • /
    • pp.320-328
    • /
    • 2023
  • Underwater active target detection is vital for defense systems, requiring accurate detection and estimation of distance and velocity. Sequential transmission is necessary at each beam angle, but divided pulse length leads to range ambiguity. Multi-frequency transmission results in time-bandwidth product losses when bandwidth is divided. To overcome these problem, we propose a novel method using Generalized Sinusoidal Frequency Modulation (GSFM) for rapid target detection, enabling low-correlation pulses between subpulses without bandwidth division. The proposed method allows for rapid updates of the distance and velocity of target by employing GSFM with minimized pulse length. To evaluate our method, we simulated an underwater environment with reverberation. In the simulation, a linear frequency modulation of 0.05 s caused an average distance estimation error of 50 % and a velocity estimation error of 103 % due to limited frequency band. In contrast, GSFM accurately and quickly tracked targets with distance and velocity estimation errors of 10 % and 14 %, respectively, even with pulses of the same length. Furthermore, GSFM provided approximate azimuth information by transmitting highly orthogonal subpulses for each azimuth.