• Title/Summary/Keyword: low aspect ratio wing

Search Result 17, Processing Time 0.015 seconds

On the Aeroelastic Characterisrics for the Flight Vehicle of Wing-Body Combination (익동체(翼胴體)의 공력탄성학적특성(空力彈性學的特性)에 관한 연구(硏究))

  • Hae-Kyong,Lee
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.10 no.1
    • /
    • pp.27-32
    • /
    • 1973
  • This paper shows the method for obtaining the body flutter velocity and frequency for flight body which consists of low aspect ratio wing and body combination by assuming slender body of cylinderical shell structure. The stiffness matrix of the cylinderical shell is represented from Donnel eq. by the finite difference method, and also unsteady aerodynamic influence matrix is represented by the Doublet Lattice Method of Albano & Rodden. The flutter matrix can be obtained from those matrices.

  • PDF

Calculation of Low Aspect Ratio Wing Aerodynamics by Using Nonlinear Vortex Lattice Method (비선형 와류격자법을 이용한 낮은 종횡비 날개의 공력특성 계산)

  • Lee, Tae-Seung;Park, Seung-O
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.11
    • /
    • pp.1039-1048
    • /
    • 2008
  • new computational procedure for the Non-Linear Vortex Lattice Method (NLVLM) is suggested in this work. Conventional procedures suggested so far usually involves inner iteration loop to update free vortex shape and an under-relaxation based iteration loop to determine the free vortex shape. In this present work, we suggest a new formula based on quasi-steady concept to fix free vortex shape which eliminates the need for inner iteration loop. Further, the ensemble averaging of the induced velocities for a given free vortex segment evaluated at each iteration significantly improves the convergence property of the algorithm without resorting to the under-relaxation technique. Numerical experiments over several low aspect ratio wings are carried out to obtain optimal empirical parameters such as the length of the free vortex segment, the vortex core radius, and the rolled-up wake length.

Static Aerodynamics-Structure Coupling Analysis of a 3D Flexible Wing Flying at Low Speed (저속 비행 3차원 유연날개 정적 공력-구조 연계해석)

  • Han, Hyungseok;Park, Joohee;Lee, Nawon;Han, Cheolheui
    • Journal of Aerospace System Engineering
    • /
    • v.9 no.2
    • /
    • pp.1-6
    • /
    • 2015
  • 태양광 고고도 장기체공형 무인기나 인간동력 항공기 등에 사용되는 높은 종횡비를 가진 유연날개는 공력 및 구조 상호작용으로 인하여, 구조적 비선형 처짐 및 양력감소 등의 문제가 발생한다. 본 연구에서는 저속 비행하는 높은 종횡비를 가진 날개의 단방향 공력-구조 연계해석을 수행하였다. XFOIL을 사용하여 공력천이현상을 포함한 저 레이놀즈수 익형 공력특성 자료 확보를 기반으로 3차원 양력선 이론을 사용하여 공력해석 연구를 수행했다. 구조해석은 상용소프트웨어 ANSYS를 사용하여 구조변형이나 응력해석 연구를 수행했다. 단방향 공력-구조 연계해석 결과를 바탕으로 인간동력 항공기 주 날개의 형상설계 연구를 수행했다.

Aerodynamic Design of the Solar-Powered High Altitude Long Endurance (HALE) Unmanned Aerial Vehicle (UAV)

  • Hwang, Seung-Jae;Kim, Sang-Gon;Kim, Cheol-Won;Lee, Yung-Gyo
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.17 no.1
    • /
    • pp.132-138
    • /
    • 2016
  • Korea Aerospace Research Institute (KARI) is developing an electric-driven HALE UAV in order to secure system and operational technologies since 2010. Based on the flight tests and design experiences of the previously developed electric-driven UAVs, KARI has designed EAV-3, a solar-powered HALE UAV. EAV-3 weighs 53kg, the structure weight is 22kg, and features a flexible wing of 19.5m in span with the aspect ratio of 17.4. Designing the main wing and empennage of the EAV-3 the amount of the bending due to the flexible wing, 404mm at 1-G flight condition based on T-800 composite material, and side wind effects due to low cruise speed, $V_{cr}=6m/sec$, are carefully considered. Also, unlike the general aircraft there is no center of gravity shift during the flight because of the EAV-3 is the solar-electric driven UAV. Thus, static margin cuts down to 28.4% and center of gravity moves back to 31% of the Mean Aerodynamic Chord (MAC) comparing with the previously designed the EAV-2 and EAV-2H/2H+ to upgrade the flight performance of the EAV-3.

Drag Reduction Design for a Long-endurance Electric Powered UAV

  • Jin, Wonjin;Lee, Yung-Gyo
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.16 no.2
    • /
    • pp.311-324
    • /
    • 2015
  • This study presents computational analyses for low-drag aerodynamic design that are applied to modify a long-endurance UAV. EAV-2 is a test-bed for a hybrid electric power system (fuel cell and solar cell) that was developed by the Korean Aerospace Research Institute (KARI) for use in future long-endurance UAVs. The computational investigation focuses on designing a wing with a reduced drag since this is the main contributor of the aerodynamic drag. The airfoil and wing aspect ratio of the least drag are defined, the fuselage configuration is modified, and raked wingtips are implemented to further reduce the profile and induced drag of EAV-2. The results indicate that the total drag was reduced by 54% relative to EAV-1, which was a small-sized version that was previously developed. In addition, static stabilities can be achieved in the longitudinal and lateral-directional by this low-drag configuration. A long-endurance flight test of 22 hours proves that the low-drag design for EAV-2 is effective and that the average power consumption is lower than the objective cruise powerof 200 Watts.

Non-linear Structural Analysis of Main Wing Spar of High Altitude Long Endurance UAV (고고도 장기체공무인기 주익 Spar 비선형 구조 해석)

  • Park, Sang-Wook;Shin, Jeong-Woo;Lee, Mu-Hyoung;Kim, Tae-Uk
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.23 no.1
    • /
    • pp.24-29
    • /
    • 2015
  • In order to increase endurance flight efficiency of long endurance electric powered UAV, main wing of UAV should have high aspect ratio and low structural weight. Since a spar which consists of thin and slender structure for weight reduction can cause catastrophic failure during the flight, it is important to develop verification method of structural integrity of the spar with the light weight design. In this paper, process of structural analysis using non-linear finite element method was introduced for the verification of structural integrity of the spar. The static strength test of the spar was conducted to identify structural characteristic under the static load. Then, the experimental result of the spar was compared to the analytical result from the non-linear finite element analysis. It was found that the developed process of structural analysis could predict well the non-linear structural behavior of the spar under ultimate load.

Developing High Altitude Long Endurance (HALE) Solar-powered Unmanned Aerial Vehicle (UAV) (고고도 장기체공 태양광 무인기 개발)

  • Hwang, SeungJae;Kim, SangGon;Lee, YungGyo
    • Journal of Aerospace System Engineering
    • /
    • v.10 no.1
    • /
    • pp.59-65
    • /
    • 2016
  • Korea Aerospace Research Institute (KARI) is developing an electric-driven HALE UAV in order to secure system and operational technologies since 2010. Based on the 5 years of flight tests and design experiences of the previously developed electric-driven UAVs, KARI has designed EAV-3, a solar-powered HALE UAV. EAV-3 weighs 53 kg, the structure weight is 21 kg, and features a flexible wing of 19.5 m in span with the aspect ratio of 17.4. Designing the main wing and empennage of the EAV-3 the amount of the bending due to the flexible wing, 404 mm at 1-G flight condition based on T-800 composite material, and side wind effects due to low cruise speed, V_cr = 6 m/sec, are carefully considered. Also, unlike the general aircraft there is no center of gravity shift during the flight. Thus, the static margin cuts down to 28.4% and center of gravity moves back to 31% of the Mean Aerodynamic Chord (MAC) comparing to the previously developed scale-down HALE UAVs, EAV-2 and EAV-2H, to minimize a trim drag and enhance a performance of the EAV-3. The first flight of the EAV-3 has successfully conducted on the July 29, 2015 and the test flight above the altitude 14 km has efficiently achieved on the August 5, 2015 at the Goheung aviation center.