• 제목/요약/키워드: loss modulus

검색결과 371건 처리시간 0.023초

Steel beam의 진동감쇠 특성평가 (Estimation of Vibration-damping Properties for Steel Beam)

  • 신수현;남효덕;정성수;이용봉
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2003년도 추계학술대회 논문집 Vol.16
    • /
    • pp.439-442
    • /
    • 2003
  • The test method of ASTM E 756 and JIS G 0602 to estimate vibration-damping properties is presented. Measurement method depending on specimen support, exciting method and calculation method for loss factor is used. Half-power bandwidth method and vibration decay method is used in the calculation method for loss factor, and Young's modulus is decided by geometric character and density for specimen and resonance frequency. Vibration measurement sensor is compared by using non-contact displacement detector, velocity detector and accelerometer. The cause of measurement error is also presented.

  • PDF

잔골재 조립율 및 굵은골재 입형이 콘크리트의 특성에 미치는 영향 (The Effect on the Properties of Concrete by Fine Aggregate Fineness Modulus and Grain Shape of Coarse Aggregate)

  • 정용욱;윤용호;이승한
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2003년도 가을 학술발표회 논문집
    • /
    • pp.102-105
    • /
    • 2003
  • The purpose of this study is to examine the influence of the flowability and the compressive strength of concrete after the improving of grain shape of the coarse aggregate and fine aggregate fineness modulus. According to the experimental results, the coarse aggregate after improvement of grain shape it lead to be down by 6% fine aggregate ratio, from 47% to 41%. The 0.5% increase of fine aggregate fineness modulus lead to 3% increase of concrete slump, and 1% reduction of concrete air content. While compressive strength on fine aggregate fineness modulus, it was increased until fineness modulus 3.0, but after it reached by 3.5 it was decreased. The compressive strength of the coarse aggregate after improving the grain shape was decreased by 6% due to loss of the adhesion of cement paste.

  • PDF

유동성 및 응축성 복합레진의 점탄성에 관한 유변학적 연구 (RHEOLOGIC STUDY ON THE VISCOELASTIC PROPERTIES OF FLOWABLE AND CONDENSABLE RESIN COMPOSITES)

  • 이인복;조병훈;손호현;권혁춘;엄정문
    • Restorative Dentistry and Endodontics
    • /
    • 제25권3호
    • /
    • pp.359-370
    • /
    • 2000
  • The purpose of this investigation was to observe the viscoelastic properties of five commercial flowable(Aeliteflo, Flow it, Revolution, Tetric flow, Compoglass flow), three conventional hybrid(Z-100, Z-250, P-60) and two condensable(Synergy compact, SureFil) resin composites. A dynamic oscillatory shear test was done to evaluate the storage shear modulus (G'), loss shear modulus(G"), loss tangent(tan ${\delta}$) and complex viscosity(${\eta}^*$) of the resin composites as a function of frequency - dynamic frequency sweep test from 0.01 to 100 rad/s at $25^{\circ}C$ - by using Advanced Rheometric Expansion System(ARES). To investigate the effect on the viscosity of resin composites of filler volume fraction, the filler weight % and volume % were measured by means of Archimedes' principle using a pyknometer. The results were as follows 1. The complex viscosity ${\eta}^*$ of flowable resins was lower than that of hybrid resins and significant differences were observed between brands. The complex viscosity ${\eta}^*$ of condensable resins was higher than that of hybrid resins. The order of complex viscosity ${\eta}^*$ at ${\omega}$=10 rad/s was as follows, Surefil, Synergy compact, P-60, Z-250, Z-100, Aeliteflo, Tetric flow, Compoglass flow, Flow it, Revolution. The relative complex viscosity of flowable resins compared to Z-100 was 0.04~0.56 but Surefil was 30.4 times higher than that of Z-100. 2. The storage shear modulus G' and the loss shear modulus G" of flowable resins were lower than those of hybrid resins but those of condensable resins were higher. The patterns of the change of loss tangent, tan ${\delta}$, of resin composites with increasing frequency were significantly different between brands. The phase angles, ${\delta}$, ranged from $30.2{\sim}78.1^{\circ}$ at ${\omega}$=10 rad/s. 3. All composite resins represent pseudoplastic nature with increasing shear rate. 4. The complex shear modulus $G^*$ and the phase angle ${\delta}$ was represented by the frequency domain phasor form, $G^*({\omega})=G^*e^{i{\delta}}=G^*{\angle}{\delta}$. The locus of frequency domain phasor plots in a complex plane was a valuable method that represent the viscoelastic properties of composite resins. 5. There was no direct linear correlationship but a weak positive relation was observed between filler volume % or weight % and the viscosity of the resin composites.

  • PDF

Preparation and rheological behavior of polystyrene/multi-walled carbon nanotube composites by latex technology

  • Woo, Dong-Kyun;Kim, Byung-Chul;Lee, Seong-Jae
    • Korea-Australia Rheology Journal
    • /
    • 제21권3호
    • /
    • pp.185-191
    • /
    • 2009
  • Polystyrene/multi-walled carbon nanotube (PS/MWCNT) composites were prepared by the use of latex technology. The monodisperse PS latex was synthesized by an emulsifier-free emulsion polymerization from styrene/potassium persulfate/water system in the presence of ethanol. The MWCNTs were first treated with acid mixture to eliminate impurities, dispersed in deionized water driven by ultrasonicator, and then mixed with the PS latex. From these mixtures, PS/MWCNT composites were prepared by freeze-drying and subsequent compression molding. In the small-amplitude oscillatory shear experiments, both complex viscosity and storage modulus increased with increasing MWCNT content. A pronounced effect of MWCNT content was observed, resulting in larger storage modulus and stronger yield behavior at low frequencies when compared to unmodified PS. It showed a transition from viscous to elastic behavior with increasing MWCNT content. Over the MWCNT content of 3 wt%, the storage modulus was higher than the loss modulus across all frequencies.

Silicate dispersion and rheological properties of high impact polystyrene/organoclay nanocomposites via in situ polymerization

  • Kim, Byung-Chul;Lee, Seong-Jae
    • Korea-Australia Rheology Journal
    • /
    • 제20권4호
    • /
    • pp.227-233
    • /
    • 2008
  • High impact polystyrene (HIPS)/organoclay nanocomposites via in situ polymerization were synthesized and their rheological properties were investigated. For the study, two types of organoclays were used: a commercially available organoclay, Cloisite 10A (C10A), and a laboratory-prepared organoclay having a reactant group, vinylclay (ODVC). The X-ray diffraction and transmission electron microscopy experiments revealed that the HIPS/ODVC nanocomposite achieved an exfoliated structure, whereas the HIPS/C10A nanocomposite achieved an intercalated structure. In the small-amplitude oscillatory shear experiments, both storage modulus and complex viscosity increased with increasing organoclay. A pronounced effect of the organoclay content was observed, resulting in larger storage modulus and stronger yield behavior in the low frequency region when compared to neat HIPS. The crossover frequencies associated with the inverse of a longest relaxation time decreased as the organoclay content increased. Over a certain value of ODVC content, a change of pattern in rheological properties could be found, indicating a solid-like response with storage modulus greater than loss modulus at all frequencies.

목분-폴리프로필렌 복합재의 점탄성적 성질과 표면특성 (Understanding the Viscoelastic Properties and Surface Characterization of woodflour-Polypropylene Composites)

  • 손정일;더글라스 가드너
    • 접착 및 계면
    • /
    • 제3권4호
    • /
    • pp.1-9
    • /
    • 2002
  • 본 연구의 목적은 목분과 폴리프로필렌으로 제조한 목질-고분자 복합재료의 점탄성적 성질에 미치는 결합제, 기핵제의 영향에 대해 고찰하는데 있으며, 목분과 결합제간의 esterification 반응이 목질-고분자 복합재의 기계적 성질에 미치는 영향 또는 고찰하고자 한다. 복합재는 목분 60%와 폴리프로필렌 40%를 혼합하여 제조하였으며, DMTA (Dynamic mechanical thermal analysis)를 사용하여 damping peaks (than ${\delta}$), storage modulus (E'), loss modulus (E")를 측정하였다. 또한 XPS (X-ray Photolectron Spectroscopy)를 사용하여 목분에 MAPP를 처리하기 전과 후의 상태를 고찰하였다. DMA 시험은 온도범위 $-20{\sim}100^{\circ}C$에서 여러가지 주파수 (1, 5, 10, 25 HZ) 조건과, 승온속도 $5^{\circ}C/min$으로 실시하였다. 이 시험결과를 토대로 복합재의 활성화에너지를 구하여 결합제와 기핵제가 목분과 고분자물질간 계면의 성질에 미치는 영향을 고찰하였다.

  • PDF

고주파 영역에서의 MR 유체 특성연구 (Material Characterization of MR Fluids at High Frequencies)

  • 박경미;김재환;최승복;김경수
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 추계학술대회논문집
    • /
    • pp.210-215
    • /
    • 2002
  • MR(Magnetorheogical) fluid composed of fine iron powders dispersed in silicon oil is utilized to many smart structures and devices because of its significant rheological property change by the application of an external magnetic field. When we deal with the shock wave attenuation of warship structures, we should be able to characterize the high frequency behavior of MR fluids. So far, however, many efforts have been focused on the material characterization of MR fluids at low frequencies below 100Hz. In this paper, the MR fluid property characterization at high frequency region is performed. An experimental setup based on wave transmission technique is made and the storage modulus as well as the loss modulus of MR fluids are found from the measured data of speed sound and attenuation. Details of the experiment are addressed and the obtained storage and loss moduli are addressed at $50kHz{\sim}100kHz$.

  • PDF

Characteristics of Lightweight Concrete and Their Application in Structures

  • 성찬영
    • 한국농공학회지
    • /
    • 제34권E호
    • /
    • pp.60-69
    • /
    • 1992
  • The research significance of the paper is to identify the major properties of synthetic lightweight concrete that are affected by ASR expansion and to determine the extent and magnitude of the loss in these properties. Emphasis is also given to the use of non-destructive testing techniques ; Such as dynamic modulus of elasticity and ultrasonic pulse velocity, to examine whether these methods could be used to identify the initiation of expansion and the internal structural damage caused by ASR.

  • PDF

양팔 샌드위치보 시험법에 의한 EPDM고무의 동특성 평가 연구 (Evaluation of Dynamic Characteristics of Rubber Materials Using a Double Cantilever Sandwich Beam Method)

  • 김광우;최낙삼
    • 대한기계학회논문집A
    • /
    • 제26권7호
    • /
    • pp.1393-1400
    • /
    • 2002
  • A double cantilever sandwich-beam method has been applied to the evaluation of the frequency dependence of dynamic elastic modulus and material loss factor of EPDM rubbers. The flexural vibration of a double cantilever sandwich-beam specimen with an inserted rubber layer was studied using a finite element simulation in combination with the sine-sweep test. Effects of the rubber layer length on the dynamic characteristics were also investigated: reliable values were measured when the length of the inserted rubber layer was larger than and equal to 50% of the effective specimen length. The values were compared with those obtained by the dynamic mechanical analysis and the simple resonant test. Relationships of the dynamic characteristics of rubbers with frequency could be determined using the least square error method.

공동주택에서 완충재를 이용한 바닥충격음 저감 System 연구 (Investigating of a Floor-Impact Isolation System Using Damping Materials In Apartment Buildings)

  • 송희수;정영;정정호;전진용
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2004년도 춘계학술대회논문집
    • /
    • pp.499-504
    • /
    • 2004
  • The purpose of this study is to investigate a investigating of a floor-impact isolation system using damping materials in apartment buildings. The stiffness elastic modulus(k) by puls impact forces were calculated loss factor by Hilbert transforms. It is absolved that natural frequency was moved floor shock-absorbing materials and the impact force was reduced by floor panel. The slab was constructed by damping materials. As towards a result, the system showed inverse A 45dB by heavy weight-impact noise and inverse A 52dB by light-impact noise. High frequencies impact-noise can be reduced by upgrading naturial frequency of vibration and noise in the system.

  • PDF