Browse > Article

Silicate dispersion and rheological properties of high impact polystyrene/organoclay nanocomposites via in situ polymerization  

Kim, Byung-Chul (Department of Polymer Engineering, The University of Suwon)
Lee, Seong-Jae (Department of Polymer Engineering, The University of Suwon)
Publication Information
Korea-Australia Rheology Journal / v.20, no.4, 2008 , pp. 227-233 More about this Journal
Abstract
High impact polystyrene (HIPS)/organoclay nanocomposites via in situ polymerization were synthesized and their rheological properties were investigated. For the study, two types of organoclays were used: a commercially available organoclay, Cloisite 10A (C10A), and a laboratory-prepared organoclay having a reactant group, vinylclay (ODVC). The X-ray diffraction and transmission electron microscopy experiments revealed that the HIPS/ODVC nanocomposite achieved an exfoliated structure, whereas the HIPS/C10A nanocomposite achieved an intercalated structure. In the small-amplitude oscillatory shear experiments, both storage modulus and complex viscosity increased with increasing organoclay. A pronounced effect of the organoclay content was observed, resulting in larger storage modulus and stronger yield behavior in the low frequency region when compared to neat HIPS. The crossover frequencies associated with the inverse of a longest relaxation time decreased as the organoclay content increased. Over a certain value of ODVC content, a change of pattern in rheological properties could be found, indicating a solid-like response with storage modulus greater than loss modulus at all frequencies.
Keywords
high impact polystyrene; nanocomposite; organoclay; rheology;
Citations & Related Records

Times Cited By Web Of Science : 4  (Related Records In Web of Science)
Times Cited By SCOPUS : 2
연도 인용수 순위
1 Alexandre, M. and P. Dubois, 2000, Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials, Mater. Sci. Eng. 28, 1-63   DOI   ScienceOn
2 Doh, J. G. and I. Cho, 1998, Synthesis and properties of polystyrene- organoammonium montmorillonite hybrid, Polymer Bulletin 41, 511-518   DOI
3 Fu, X. and S. Qutubuddin, 2001, Polymer-clay nanocomposites: exfoliation of organophilic montmorillonite nanolayers in polystyrene, Polymer 42, 807-813   DOI   ScienceOn
4 Potschke, P., T. D. Fornes and D. R. Paul, 2002, Rheological behaviour of multiwalled carbon nanotube/polycarbonate composites, Polymer 43, 3247-3255   DOI   ScienceOn
5 Uthirakumar, P., Y. B. Hahn, K. S. Nahm and Y. S. Lee, 2005, Exfoliated high-impact polystyrene/MMT nanocomposites prepared using anchored cationic radical initiator-MMT hybrid, Eur. Polym. J. 41, 1582-1588   DOI   ScienceOn
6 Zhao, J., A. B. Morgan and J. D. Harris, 2005, Rheological characterization of polystyrene-clay nanocomposites to compare the degree of exfoliation and dispersion, Polymer 46, 8641-8660   DOI   ScienceOn
7 Gelfer, M. Y., H. H. Song, L. Liu, B. S. Hsiao, B. Chu, M. Rafailovich, M. Si and V. Zaitsev, 2003, Effects of organoclays on morphology and thermal and rheological properties of polystyrene and poly(methyl methacrylate) blends, J. Polym. Sci. Part B: Polym. Phys. 41, 44-54   DOI   ScienceOn
8 Morgan, A. B. and J. W. Gilman, 2003, Characterization of polymer- layered silicate (clay) nanocomposites by transmission electron microscopy and X-ray diffraction: a comparative study, J. Appl. Polym. Sci. 87, 1329-1338   DOI   ScienceOn
9 Akelah, A. and A. Moet, 1996, Polymer-clay nanocomposites: free-radical grafting of polystyrene on to organophilic montmorillonite interlayers, J. Mater. Sci. 31, 3589-3596   DOI
10 Wagener, R. and T. J. G. Reisinger, 2003, A rheological method to compare the degree of exfoliation of nanocomposites, Polymer 44, 7513-7518   DOI   ScienceOn
11 Giannelis, E. P., 1996, Polymer layered silicate nanocomposites, Adv. Mater. 8, 29-35   DOI
12 Hoffmann, B., C. Dietrich, R. Thomann, C. Friedrich and R. Mulhaupt, 2000, Morphology and rheology of polystyrene nanocomposites based upon organoclay, Macromol. Rapid Commun. 21, 57-61   DOI   ScienceOn
13 Krishnamoorti, R. and E. P. Giannelis, 1997, Rheology of endtethered polymer layered silicate nanocomposites, Macromolecules 30, 4097-4102   DOI   ScienceOn
14 Krishnamoorti, R. and K. Yurekli, 2001, Rheology of polymer layered silicate nanocomposites, Curr. Opin. Colloid Interface Sci. 6, 464-470   DOI   ScienceOn
15 Cervantes-Uc, J. M., J. V. Cauich-Rodriguez, J. Vazquez-Torres, L. F. Garfias-Mesias and D. R. Paul, 2007, Thermochimica Acta 457, 92-102   DOI   ScienceOn
16 Lee, K. H. and C. D. Han, 2003a, Rheology of organoclay nanocomposites: Effects of polymer matrix/organoclay compatibility and the gallery distance of organoclay, Macromolecules 36, 7165-7178   DOI   ScienceOn
17 Riess, G. and P. Gaillard, 1983, Polymer reaction engineering, Reichert, K. H. and W. Geiseler, Eds., Hanser, New York
18 Kim, K. Y., H. J. Lim, S. M. Park and S. J. Lee, 2003, Synthesis and characterization of high impact polystyrene/organically modified layered silicate nanocomposites, Polymer (Korea) 27, 377-384
19 Lee, K. H. and C. D. Han, 2003b, Effect of hydrogen bonding on the rheology of polycarbonate/organoclay nanocomposites, Polymer 44, 4573-4588   DOI   ScienceOn
20 Usuki, A., M. Kawasumi, Y. Kojima, A. Okada, T. Kurauchi and O. Kamigaito, 1993, Swelling behavior of montmorillonite cation exchanged for ${\omega}-amino$ acids by ${\varepsilon}-caprolactam$, J. Mater. Res. 8, 1174-1178   DOI