• Title/Summary/Keyword: loss in slump flow

Search Result 22, Processing Time 0.025 seconds

Influence of granite waste aggregate on properties of binary blend self-compacting concrete

  • Jain, Abhishek;Gupta, Rajesh;Chaudhary, Sandeep
    • Advances in concrete construction
    • /
    • v.10 no.2
    • /
    • pp.127-140
    • /
    • 2020
  • This study explores the feasibility of granite waste aggregate (GWA) as a partial replacement of natural fine aggregate (NFA) in binary blend self-compacting concrete (SCC) prepared with fly ash. Total of nine SCC mixtures were prepared wherein one was Ordinary Portland cement (OPC) based control SCC mixture and remaining were fly ash based binary blend SCC mixtures which included the various percentages of GWA. Fresh properties tests such as slump flow, T500, V-funnel, J-ring, L-box, U-box, segregation resistance, bleeding, fresh density, and loss of slump flow (with time) were conducted. Compressive strength and percentage of permeable voids were evaluated in the hardened state. All the SCC mixtures exhibited sufficient flowability, passing ability, and resistance to segregation. Besides, all the binary blend SCC mixtures exhibited lower fresh density and bleeding, and better residual slump (up to 50% of GWA) compared to the OPC based control SCC mixture. Binary blend SCC mixture incorporating up to 40% GWA provided higher compressive strength than binary blend control SCC mixture. The findings of this study encourage the utilization of GWA in the development of binary blend SCC mixtures with satisfactory workability characteristics as a replacement of NFA.

Manufacture of Ultra High Strength Concrete using Industrial by-products (산업부산물을 활용한 초고강도콘크리트의 제조)

  • Moon, Han-Young;Kim, Byoung-Kwon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.5 no.3
    • /
    • pp.153-162
    • /
    • 2001
  • This paper presents the fundamental study on rational manufacture of Ultra High Strength(VHS) concrete using industrial by-products as like silica fume, slag and fly ash. In this study, we had tested various mixing cases to manufacture the UHS concrete(target compressive strength : over $1,000kgf/cm^2$) which is easily workable (target slump flow : $60{\pm}10cm$). The main variables are studied: 1) to find the optimum replacement ratio of mineral admixture. 2) to find a rational water-binder ratio and a proper binder content. 3) to find the method for reduction of slump loss. From the test results, it is concluded that the rational mix design can be made by using 40% slag, 10% silica fume. We found that compressive strength of UHS concrete increases according to decreasing W/B ratio but in W/B ratio 18~20%, the difference is vague and the compressive strength does not necessarily increase according to increasing binder content over 700kg.

  • PDF

A Fundamental Study on Very High Strength and High Flowable Concrete using Industrial By-products (산업부산물을 활용한 고유동화 초고강도 콘크리트의 기초물성 및 동결융해특성)

  • 김병권;이석홍;정하선;이영남;문한영
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.05a
    • /
    • pp.707-714
    • /
    • 2001
  • This paper presents the fundamental study on rational manu(acture of Very High Strength(VHS) concrete using industrial by-products as like silica fume, slag and fly ash. In this study, we had tested various mixing cases to manufacture the VHS concrete(target compressive strength : over 1,000 kgf/$cm^{2}$) which is easily workable (target slump flow : 60$\pm$l0cm), The main variables studied are; 1) test variables to find the optimum replacement ratio of mineral admixture, 2) test variables to find a rational water-binder ratio, a proper binder content, 3) test variables to find the method for reduction of slump loss, 4) test variables to know the influence of air entrainment on frost resistance. From the test results, it is concluded that the rational mix design can be made by using 40% slag, 10% silica fume, and water reducing agent(slump loss reduction type). We found that it is unnecessary to entrain air for freeze-thawing resistance.

  • PDF

Study on the field application according to the early strength of the concrete admixed with polycarboxylate superplasticizer (폴리카본산계 고성능감수제를 이용한 콘크리트의 초기강도에 따른 현장적용성 연구)

  • Lee Jin Woo;Kim Kyung Min;Bae Yeoun Ki;Lee Jae Sam
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.200-203
    • /
    • 2004
  • In this study, it is examined the properties of flow and early strength of concrete according to superplasticizer. For this experiment, it is analyzed that the flow and strength properties according to the mixture factors, compared with naphthalene superplasticizer(normal & delay type) focused on polycarboxylate superplasticizer. (1) The slump loss of concrete used polycarboxylate superplasticizer showed $4\~8cm$, it is judged that slump loss according to the time lapse can be minimized. (2) The performance of polycarboxylate superplasticizer is about $70\%$ level of the normal naphthalene type, it is superior to the delay type, but the performance showed so lowly. The 28days, early strength didn't differ according to the kind of superplasticizer.

  • PDF

The Development of Melamine Superplasticizer Using Antiwashout Underwater Concrete (수중불분리콘크리트에 사용되는 멜라민유동화제 개발)

  • Kang, Hyun-Ju;Lee, Kyung-Hee;Cho, In-Sung;Park, Soon-Eui
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.10
    • /
    • pp.963-969
    • /
    • 2002
  • In this studies, methly celluloes was used as antiwashout admixture and when considering the physical properties and economical efficiencies of Underwater Concrete as the results of making an experiencing slump flow, flow loss, setting time, suspension and pH also compressive strength and underwater/an air compressive strength ratio according to the adding amount changes 5, 7, 9, 11 kg/$m^3$ to Underwater Concrete of melamine superplasticizer, the using amount of melamine superplasticizer in Underwater Concrete approximately represents 9 kg/$m^3$.

Study of The Combined High Flowing Self-Compacting Concrete's Cast in Place (병용계 고유동 자기충전 라이닝콘크리트의 현장 타설에 관한 연구)

  • Choi, Wook;Park, Hyun-Myo;Choi, Yun-Wang;Lee, Kwang-Myong;Kim, Gi-Beom;Yoon, Tae-Jung
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.977-980
    • /
    • 2008
  • Recently, the study on the application of SCC(Self-Compacting Concrete) is actively underway, in order to solve the lack of flowability and the poor compacting which is one of the chronic problems of tunnel lining concrete. The aim of this study is that to verify the validity of the application of SCLC(Self-Compacting Lining Concrete) for tunnel lining concrete and to examine the characteristic of flowing and mechanics of SCLC in term of comparing before and after casting SCLC was developed by Packing Factor mix method and casted in field mix-design according to the condition of site and the characteristic of aggregate. Before casting, the tests of the capability of flowability and durability was performed by slump flow, air void and so on. Additionally, the slump flow loss is measured to evaluated the possibility of cast-in-place. Furthermore, considering on the first time SCLC casting applied to the tunnel lining in Korea, it is provided that the careful items and the correct way for construction when applied the SCLC on site.

  • PDF

Properties of Self Compacting Concrete Using Viscosity Agent Based on Polysaccharide Derivative (폴리사카라이드계 증점제를 혼합한 고유동 콘크리트의 물성)

  • Choi Jae-Jin;Yoo Jung-Hoon;Shin Do-Cheal;Na Chong-Youl
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05b
    • /
    • pp.45-48
    • /
    • 2005
  • Self compacting concrete has the strong point in capability of concrete to be uniformly filled and compacted in every corners of formwork by its self-weight without vibration during placing. However, powder type self compacting concrete has the weak point in the heat of hydration, the drying shrinkage and the elastic property of concrete etc. Recently viscosity agent has been developed in order to overcome these weaknesses. In this study, self compacting concrete is made with viscosity agent based on polysaccharide derivative in order to develope the normal strength self compacting concrete. Slump flow, loss of slump flow and setting time are measured for comparison with normal concrete. Compressive strength, freezing and thawing test and carbonation test are conducted on normal and self compacting concrete using viscosity agent. In the experiment, we acquired good results in fresh and hardened self compacting concrete using viscosity agent based on polysaccharide derivative.

  • PDF

A Study on the Strength Feature of Metakaolin (메타카올린의 강도특성에 대한 연구)

  • 문수동;이상호;문한영;염준환
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.11a
    • /
    • pp.23-26
    • /
    • 2003
  • Metakaolin is a cementitious material for producing high-strength concrete. This material is now used as substitute for silica-fume. In this paper, we studied the properties of fresh concrete such as slump-flow, air content, and the feature of strength of hardened concrete according to the substitute ratio of metakaolin, silica-fume. In the fresh concrete test, the time depend loss of slump-flow & air content is good to 10-15% substitute ratio of metakaolin. And, in the strength test, 10-15% substitute ratio of metakaolin is good for producing high-strength concrete also. But, allowing for economical efficiency, we concluded that 10% is a adequate substitute ratio for producing high performance concrete.

  • PDF

An Experimental Study on the preparation of High Performance Concrete (고유동콘크리트의 제조에 관한 실험적 연구)

  • 최진만;윤재환;황세몽;용태형;이영수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1993.10a
    • /
    • pp.39-44
    • /
    • 1993
  • The aim of this study is to develop High Performance Concrete, which can fill in every corner of forms without using any vibrators. In order to place concrete into reinforced members, concrete should have segregation resistance and high flowability. In this study, the binder of concrete, such as Ordinary Portland Cement, fly ash, and blast furnace slag, cement were mixed with the addition of superplasticizers and tested their flowability and segregation resistance using slump flow tester and L type flow tester. As a results, High Performance Concrete can be made using Portland blast furnace slag cement along with superplasticizers but the slump-loss of concrete is so large that measure should be made.

  • PDF

Mock-up Tests of Concrete Filled Steel Tubular Columns (콘크리트 충전 강관 기둥의 시공에 관한 연구)

  • Lee, Deok-Chan;Choi, Jin-Man;Lee, Do-Heon;Kim, Hoon;Kim, Jin-Cheol;Park, Yon-Dong
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1996.04a
    • /
    • pp.382-387
    • /
    • 1996
  • Three concrete filled steel tubular columns with six inner diaphrams are constructed and tested under field conditions. The size and shape of three columns are exactly same. The cross section is $40\times40cm$, and the height is 9m. Each column is constructed with normal concrete, CFST concrete, and high flowing concrete, respectively. Concrete is pumped into bottom parts of steel tubular columns from a concrete pump on the ground. Test data indicate that the slump flow of the concrete place in the top of the column is lower than that of the concrete before pumping by about 10~20cm. Slump flow loss of high flowing concrete caused by pumping is high compared to the other concretes. Concrete pump pressure of high flowing concrete is somewhat higher than that of CFST concrete.

  • PDF