• Title/Summary/Keyword: loop reactor

Search Result 251, Processing Time 0.028 seconds

A Study on the NOx Reduction of Flue Gas Using Seawater Electrolysis (해수 전기분해를 적용한 배연 탈질 기술에 관한 연구)

  • Kim, Tae-Woo;Kim, Jong-Hwa;Song, Ju-Yeong
    • Journal of the Korean Applied Science and Technology
    • /
    • v.29 no.4
    • /
    • pp.570-576
    • /
    • 2012
  • In this study, we investigated the characteristics of NO oxidation using un-divided electrolyzed seawater as oxidant. The concentration of available chlorine and the temperature of electrolyzed seawater are increased with electrolysis time in the closed-loop constant current electrolysis system. While NO gas flow through bubbling reactor which is filled with electrolyzed seawater, the oxidation rate of NO to $NO_2$ is increased with the concentration of available chlorine and the temperature. $NO_2$, generated by oxidation reaction, is dissolved in electrolyzed seawater and existed as $HNO_3{^-}$ ion.

Static VAR Compensator-Based Voltage Regulation for Variable-Speed Prime Mover Coupled Single- Phase Self-Excited Induction Generator

  • Ahmed, Tarek;Noro, Osamu;Sato, Shinji;Nakaoka, Mutsuo
    • Journal of Power Electronics
    • /
    • v.3 no.3
    • /
    • pp.185-196
    • /
    • 2003
  • In this paper, the single-phase static VAR compensator (SVC) is applied to regulate and stabilize the generated terminal voltage of the single-phase self-excited induction generator (single-phase SEIG) driven by a variable-speed prime mover (VSPM) under the conditions of the independent inductive load variations and the prime mover speed changes The conventional fixed gain PI controller-based feedback control scheme is employed to adjust the equivalent capacitance of the single-phase SVC composed of the fixed excitation capacitor FC in parallel with the thyristor switched capacitor TSC and the thyristor controlled reactor TCR The feedback closed-loop terminal voltage responses in the single-phase SEIG coupled by a VSPM with different inductive passive load disturbances using the single-phase SVC with the PI controller are considered and discussed herem. A VSPM coupled the single-phase SEIG prototype setup is established. Its experimental results are illustrated as compared with its simulation ones and give good agreements with the digital simulation results for the single-phase SEIG driven by a VSPM, which is based on the SVC voltage regulation feedback control scheme.

Experimental Study on Design Verification of New Concept for Integral Reactor Safety System (일체형원자로의 신개념 안전계통 실증을 위한 실험적 연구)

  • Chung, Moon-Ki;Choi, Ki-Yong;Park, Hyun-Sik;Cho, Seok;Park, Choon-Kyung;Lee, Sung-Jae;Song, Chul-Hwa
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.2053-2058
    • /
    • 2004
  • The pressurized light water cooled, medium power (330 MWt) SMART (System-integrated Modular Advanced ReacTor) has been under development at KAERI for a dual purpose : seawater desalination and electricity generation. The SMART design verification phase was followed to conduct various separate effects tests and comprehensive integral effect tests. The high temperature / high pressure thermal-hydraulic test facility, VISTA(Experimental Verification by Integral Simulation of Transient and Accidents) has been constructed to simulate the SMART-P (the one fifth scaled pilot plant) by KAERI. Experimental tests have been performed to investigate the thermal-hydraulic dynamic characteristics of the primary and the secondary systems. Heat transfer characteristics and natural circulation performance of the PRHRS (Passive Residual Heat Removal System) of SMART-P were also investigated using the VISTA facility. The coolant flows steadily in the natural circulation loop which is composed of the steam generator (SG) primary side, the secondary system, and the PRHRS. The heat transfers through the PRHRS heat exchanger and ECT are sufficient enough to enable the natural circulation of the coolant.

  • PDF

Spectrum analysis of acoustic Barkhausen noise on neutron irradiated material

  • Sim Cheul-Muu;Park Seung-Sik;Park Duck-Gum;Lee Chang-Hee
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • autumn
    • /
    • pp.231-234
    • /
    • 2000
  • In relation to a non-destructive evaluation of irradiation damage of micro-structure of interstitial, void and dislocation, the changes in the hysteresis loop and Barkhausen noise amplitude and the harmonics frequency due to neutron irradiation were measured and evaluated. The Mn-Mo-Ni low alloy steel of reactor pressure vessel was irradiated to a neutron fluence of $2.3\times10^{19}n/cm^2$ $(E\ge1MeV)$ at $288^{\circ}C.$The saturation magnetization of neutron irradiated metal did not change. Neutron irradiation caused the coercivity to increase, whereas susceptibility to decrease. The amplitude of Barkhausen noise parameters associated with the domain wall motion were decreased by neutron irradiation. The spectrum of Barkhausen noise was analyzed with an applied frequency of 4Hz and 8Hz, and a sampling time of 50 $\mu$ sec and 20 $\mu$ sec. The harmonic frequency of Joule effect shows 4Hz, 8Hz, 12Hz and 16Hz reflected from an unirradiated specimen. On the contrary, the harmonic frequency disappeared for the irradiated specimen. Harmonic frequency of induced voltage of sinusoidal magnetic field And Spectrum of Barkhausen noise on material is determined.

  • PDF

REVIEW OF SUPERCRITICAL CO2 POWER CYCLE TECHNOLOGY AND CURRENT STATUS OF RESEARCH AND DEVELOPMENT

  • AHN, YOONHAN;BAE, SEONG JUN;KIM, MINSEOK;CHO, SEONG KUK;BAIK, SEUNGJOON;LEE, JEONG IK;CHA, JAE EUN
    • Nuclear Engineering and Technology
    • /
    • v.47 no.6
    • /
    • pp.647-661
    • /
    • 2015
  • The supercritical $CO_2$ (S-$CO_2$) Brayton cycle has recently been gaining a lot of attention for application to next generation nuclear reactors. The advantages of the S-$CO_2$ cycle are high efficiency in the mild turbine inlet temperature region and a small physical footprint with a simple layout, compact turbomachinery, and heat exchangers. Several heat sources including nuclear, fossil fuel, waste heat, and renewable heat sources such as solar thermal or fuel cells are potential application areas of the S-$CO_2$ cycle. In this paper, the current development progress of the S-$CO_2$ cycle is introduced. Moreover, a quick comparison of various S-$CO_2$ layouts is presented in terms of cycle performance.

Corrosion Behavior of Zirconium Alloys with Nb and Cr Addition (Nb 및 Cr 첨가에 따른 지르코늄 합금의 부식거동)

  • Kim, Yoon-Ho;Mok, Yong-Kyoon;Kim, Hyun-Gil;Lee, Jong-Hyeon
    • Korean Journal of Materials Research
    • /
    • v.25 no.8
    • /
    • pp.376-385
    • /
    • 2015
  • The effects of Nb and Cr addition on the microstructure, corrosion and oxide characteristics of Zr based alloys were investigated. The corrosion tests were performed in a pressurized water reactor simulated-loop system at $360^{\circ}C$. The microstructures were examined using OM and TEM, and the oxide properties were characterized by low-angle X-ray diffraction and TEM. The corrosion test results up to 360 days revealed that the corrosion rates were considerably affected by Cr content but not Nb content. The corrosion resistance of the Zr-xNb-0.1Sn-yCr quaternary alloys was improved by an increasing Nb/Cr ratio. The crystal structure of the precipitates was affected by a variation of the Nb/Cr ratio. The Zr-Nb beta-enriched precipitates were mainly formed in the high Nb/Cr ratio alloy while $Zr(NbCr)_2$ precipitates were frequently observed in the low Nb/Cr ratio alloy. The studies of oxide characteristics revealed that the corrosion resistance was related to the crystal structure of the precipitate.

A Compensation Method considering Unbalance of Reactor at Source Side in Driving 3 Phase Voltage type PWM Converter (3상 전압형 PWM 컨버터 운전시 전원측 리액터의 불평형을 고려한 보상법)

  • Chun, Ji-Yong;Lee Sa-Young;Cho Yu-Hwan;Lee Geun-Hong
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.10 no.4
    • /
    • pp.373-379
    • /
    • 2005
  • In this paper, the control algorithm of DC source device for inverter starting is proposed and the control method for compensating unbalance system source on operating time in the voltage type PWM converter with driving and regenerative faculty is suggested. The maintaining way of balancing condition for converter of AC source is used the compensating unbalanced status by current control loop. Because it is possible that the unbalanced System control is used to leakage transformer not equaled reactance by each phase in rectifier system, the proposed H/W and control algorithm of rectifier system is contributed to minimize of device and rising efficiency.

Design of ALIP with Flowrate of 40 I/min for the Removal of Residual Heat (잔열 제거용 40 I/min급 환단면 선형유도전자펌프의 설계)

  • Kim, H.R.;Nam, H.Y.;Kim, Y.G.;Choi, B.H.;Kim, J.M.;Hwang, J.S.
    • Proceedings of the KIEE Conference
    • /
    • 1998.11a
    • /
    • pp.13-15
    • /
    • 1998
  • EM(Electro Magnetic) pump is used for the purpose of transporting liquid sodium coolant with electrical conductivity in the LMR(Liquid Metal Reactor). In the present study. pilot EM pump has been designed by using of equivalent circuit method which is commonly employed to analyze linear induction machines for the test of removal of residual heat. The length and diameter of the pump have fixed values of 840 mm and 101.6 mm each by taking account of geometrical size of circulation loop for the installation of EM pump. Flowrate versus developing pressure is related from Laithwaite's standard design formula and the characteristic analyses of developing force and efficiency are carried out according to change of input frequency. From the characteristic curve, input frequency of 13 Hz is determined as the design frequency. On the other hand, The annular air gap size of 6.05 mm is selected not to bring about too much hydraulic loss. Resultantly design analysis makes pump have the electrical input of 604 VA and the hydrodynamical capacity of 1.3 bars and 40 l/min.

  • PDF

The Implementation of Current Compensation Controller in Driving Voltage type Converter considering the Unbalance of Reactor at the Source Side (전원측 리액터 불평형을 고려한 전압형 컨버터의 전류 보상 제어기 구현)

  • Chun Ji-Yong;Cho Yu-Hwan;Lee Geun-Hong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.5 no.5
    • /
    • pp.413-420
    • /
    • 2004
  • In this paper, the control algorithm of DC source device for inverter starting is proposed and the control method for compensating unbalance system source on operating time in the voltage type PWM converter with driving and regenerative faculty is suggested. The maintaining method of balancing condition for converter of AC source is used the compensating unbalanced status by current control loop. In order to solve the problem which the unbalanced system control is used to leakage transformer not equaled reactance by each phase in rectifier system. The proposed H/W and control algorithm of rectifier system is contributed to minimize of device and rising efficiency.

  • PDF

Investigation on reverse flow characteristics in U-tubes under two-phase natural circulation

  • Chu, Xi;Li, Mingrui;Chen, Wenzhen;Hao, Jianli
    • Nuclear Engineering and Technology
    • /
    • v.52 no.5
    • /
    • pp.889-896
    • /
    • 2020
  • The vertically inverted U-tube steam generator (UTSG) is widely used in the pressurized water reactor (PWR). The reverse flow behavior generally exists in some U-tubes of a steam generator (SG) under both single- and two-phase natural circulations (NCs). The behavior increases the flow resistance in the primary loop and reduces the heat transfer in the SG. As a consequence, the NC ability as well as the inherent safety of nuclear reactors is faced with severe challenges. The theoretical models for calculating single- and two-phase flow pressure drops in U-tubes are developed and validated in this paper. The two-phase reverse flow characteristics in two types of SGs are investigated base on the theoretical models, and the effects of the U-tube height, bending radius, inlet steam quality and primary side pressure on the behavior are analyzed. The conclusions may provide some promising references for SG optimization to reduce the disadvantageous behavior. It is also of significance to improve the NC ability and ensure the PWR safety during some accidents.