• Title/Summary/Keyword: loop gain

Search Result 638, Processing Time 0.027 seconds

Active Window system based on Finite Thickness Window Model (유한 두께 창문 모델을 적용한 능동 소음제어 창문)

  • Kwon, Byoung-Ho;Park, Young-Jin
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.04a
    • /
    • pp.763-768
    • /
    • 2012
  • Active window system which can reduce the environmental noises, such as traffic noise and construction noise, from an open window into a room was proposed in the previous works. The key idea of the proposed active window system was that the control sources are approximately collocated with the primary noise source in terms of the acoustic power for global noise reduction throughout the interior room. Moreover, because it is important not to intrude into the living space in the building environment, no error sensors were used and an open-loop control method using control sources at the window frame and the reference sensors outside the room was used for the proposed system. The open-loop control gain was calculated by the interior room model assumed as the semi-infinite space, and the interior sound field was estimated by Rayleigh integral equation under the baffled window model assumption. However, windows with a finite thickness should were considered for the calculation of the open-loop control gain of the active window system since these are representative of most window cases. Therefore, the finite thickness window model based on the Sgard's model was derived and the open-loop control gain using the interior sound field estimated by that model was calculated for active window system. To compare the performance of these two models, a scale-model experiment was performed in an anechoic chamber according to noise source directions. Experimental results showed that the performance for the thickness window model is better than the baffled window model as the angle with respect to the perpendicular direction is larger.

  • PDF

Burst Mode AGC Loop and Preamble Detector for VDL Mode-2 (VDL Mode-2 를 위한 버스트 모드 AGC 루프 및 프리엠블 검출기)

  • Gim, Jong-Man;Eun, Chang-Soo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.7C
    • /
    • pp.706-714
    • /
    • 2009
  • In this paper, we proposed a burst mode AGC loop and preamble detector applicable for VDL(VHF Digital Link) mode-2 using D8PSK modulation scheme and the performance analysis of proposed schemes is described. Generally the AGC scheme can be divided into two types, continuos and burst mode AGC. The continuos mode is performed well only with an analog feedback AGC loop. But the analog feedback AGC loop is not suitable for burst mode since its gain lock time is more than preamble duration, which causes the preamble detector misses preamble. Hence a fast digital AGC loop is required for burst mode. Also the AGC loop has to be designed with full gain during idle time to detect bursts although the signal level is very low. If the time to acquire gain lock is slow, the preamble detector fail to detect burst due to saturation of a lot of preamble samples. The receiver performance might be down even if the burst was detected because the preamble is used to estimate several parameters need to demodulation at receiver. In this paper we analysed relationships between the AGC loop and preamble detector. we present an AGC loop and preamble detector in burst mode.

Contour Error Analysis and Feed Controller Optimization for Machining Center (머시닝센터를 위한 윤곽오차 분석 및 이송축 제어기 최적화)

  • 김성현;윤강섭;이만형
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.12 no.3
    • /
    • pp.17-24
    • /
    • 2003
  • One of the most important performance criteria related to the gain tuning of controller for CNC machining center is the contour error. This study analyzed circular error by the axis-matched and mismatched cases. To reduce ellipse and radius error, it is necessary to set the gain for each axis to be same bandwidth and high response. Based on the analysis in the frequency domain, we simulate feed system by mathematical model and then predict bandwidth of each axis. For analysis of structure vibration while the each axis is moving, we try the various of measuring method and position loop is improved by jerk limit.

Enhancement of Roll Stability by Speed-Adaptive Robust Control (속도감은 강건제어에 의한 롤 운동 특성개선)

  • Kim, Hyo-Jun;Park, Yeong-Pil
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.4
    • /
    • pp.167-175
    • /
    • 2001
  • This paper presents design of active roll controller of a vehicle and experimental study using the electric actuating roll control system. Firstly, parameter sensitivity analysis is performed based on 3DOF linear vehicle model. The controller is designed in the frame work of gain-scheduled H$\infty$ control scheme considering the varying parameters induced by laden and running vehicle condition. In order to investigate a feasibility of an active control system, experimental work is performed using hardware-in-the -loop setup which has been constructed by the devised electric actuating system and the full vehicle model with tire characteristics. The performance is evaluated by experiment using hardware-in-the -loop simulation under the conditions of some steer maneuvers and parameter variations.

  • PDF

New Cyclic Precoding Vectors for Open-loop Transmit Diversity Techniques

  • Lee, Kyoung-Jae;Lee, Heun-Chul;Lee, In-Kyu
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.5A
    • /
    • pp.347-354
    • /
    • 2009
  • In this paper, we propose a new transmit diversity technique for multiple-input multiple-output (MIMO) systems to improve the link level performance of open-loop systems. By cyclically applying a predetermined set of preceding weight vectors, artificially induced fluctuation is created to achieve additional diversity gain in flat fading channels. To design the set of the precoding vectors, we exploit the knowledge on the distribution of near optimum Preceding vectors observed in a beamforming scheme based on the rotation transformations. Simulation results demonstrate that the proposed open-loop diversity scheme with an arbitrary number of transmit antennas achieves a full diversity gain with computational complexity comparable to a single-input single-output (SISO) system.

Design of the Anti-windup and Bumpless Transfer Controller with Application to Nonlinear Boiler Systems (누적방지 무충돌 전환 제어기의 설계와 비선형 보일러 시스템 적용)

  • Lee, Young-Sam;Lee, Myung-Eui;Kwon, Oh-Kyu
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.4
    • /
    • pp.247-253
    • /
    • 2000
  • In this paper, we deal with the full range control problem of nonlinear boiler systems subject to complex actuator constraints. Firstly, $H\infty$ loop shaping design procedure[10] is used for the controller design. Secondly, modified high-gain feedback[11] for the loop shaping controller is adopted for the anti-windup function and the bumpless transfer technique between controllers is proposed for the full range control of nonlinear systems. Finally, the performance of the proposed controller is demonstrated through the simulation studies.

  • PDF

Oscillation Amplitude-controlled Resonant Accelerometer Design using Aautomatic Gain Control Loop (자동이득 제어루프를 이용한 진폭제어방식의 공진형 가속도계 설계)

  • Yun, Suk-Chang;Sung, Sang-Kyung;Lee, Young-Jae;Kang, Tae-Sam
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.7
    • /
    • pp.674-679
    • /
    • 2008
  • In this paper, we introduce a new design approach for self-sustained resonant accelerometer, that takes advantage of the automatic gain control (AGC) loop to achieve a stabilized oscillation dynamics. Fundamental idea of this accelerometer is to maintain uniform amplitude of oscillation under input accelerations. Through system modeling and loop transformation considering the envelope of oscillation, the controller is designed to maintain uniform amplitude in oscillation under dynamic input acceleration. The simulation results demonstrate the feasibility of the proposed accelerometer design, which is applicable to control grade inertial measurement system in industrial and civil application fields.

Modified TEM Horn for Enhanced Radiation Characteristics at Low Frequency

  • Kim, Jae Sik;Park, Hyeong Soon;Yoon, Young Joong;Ryu, Jiheon;Choi, Jin Soo
    • Journal of electromagnetic engineering and science
    • /
    • v.14 no.2
    • /
    • pp.74-78
    • /
    • 2014
  • This paper presents a modified TEM horn that improves radiation characteristics at a low frequency region. The proposed antenna consists of an asymmetric TEM (ATEM) horn and a loop structure with an elliptical shape. The bandwidth and gain at low frequency region can be enhanced by using the ATEM horn configuration and adding a loop structure with an elliptical shape to the ATEM horn. The bandwidth of the proposed antenna is from 2.14 to over 20 GHz, whereas that of the conventional TEM horn is from 2.7 to over 20 GHz, where the dimensions of both antennas are the same except for the thickness of the loop structure. The physical and electrical dimensions of the proposed antenna are $60mm{\times}62.5mm{\times}64mm$ ($width{\times}height{\times}length$) and $0.428{\lambda}_L{\times}0.445{\lambda}_L{\times}0.456{\lambda}_L$, where ${\lambda}_L$ corresponds to the lowest frequency of the bandwidth. The realized gain of the proposed antenna is improved by 0.802 dB on average at the low frequency region (2 to 8 GHz), where the maximum gain increase is 2.932 dB when compared to a conventional TEM horn.

Performance Evaluation of Vector Tracking Loop Based Receiver for GPS Anti-Jamming Environment (GPS 교란 환경에서 벡터추적루프 기반 수신기 성능평가)

  • Song, Jong-Hwa;Im, Sung-Hyuck;Jee, Gyu-In
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.2
    • /
    • pp.152-157
    • /
    • 2013
  • In this paper, we represent the implementation and performance analysis of vector tracking loop based GPS receiver for jamming environment. The vector tracking loop navigation performance is compared by simulation with conventional tracking loop. The simulation results shows that vector tracking loop is more robust than conventional tracking loop in jamming environment. The vector tracking loop can gain 2dB in jamming performance capability over a conventional GPS receiver. Also, Anti-jamming performance of INS Doppler aiding and deep integration method are compared.

Improved Transmitter Power Efficiency using Cartesian Feedback Loop Chip

  • Chong, Young-Jun;Lee, Il-Kyoo;Oh, Seung-Hyeub
    • Journal of electromagnetic engineering and science
    • /
    • v.2 no.2
    • /
    • pp.93-99
    • /
    • 2002
  • The Cartesian loop chip which is one of key devices in narrow-band Walky-Talky transmitter using RZ-SSB modulation method was designed and implemented with 0.35 Um CMOS technology. The reduced size and low cost of transmitter were available by the use of direct-conversion and Cartesian loop chip, which improved the power efficiency and linearity of transmitting path. In addition, low power operation was possible through CMOS technology. The performance test results of transmitter showed -23 dBc improvement of IMD level and -30 dEc below suppression of SSB characteristic in the operation of Cartesian loop chip (closed-loop). At that time, the transmitting power was about 37 dBm (5 W). The main parameters to improve the transmitting characteristic and to compensate the distortion in feed back loop such as DC-offset, loop gain and phase value are interfaced with notebook PC to be controlled with S/W.