• 제목/요약/키워드: loop feeder

검색결과 20건 처리시간 0.035초

간선 및 분기선의 개폐기 설치 효과 분석(II) (Reliability analysis of the switch installation in the main feeder and in the radial/loop lateral feeders in distribution system)

  • 조남훈;오재형;이흥호
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2002년도 하계학술대회 논문집 A
    • /
    • pp.83-86
    • /
    • 2002
  • In this study, we evaluate the effectiveness of a switch installation between on the radial and loop lateral feeders to increase reliability by decreasing the duration of the outage. These results can help power utility to design the switch layouts on the radial and loop lateral feeder system.

  • PDF

간선 및 분기선의 개폐기 설치 효과 분석(I) (Reliability analysis of the switch installation in the main feeder and in the radial/loop lateral feeders in distribution system)

  • 조남훈;오재형;이흥호
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2002년도 하계학술대회 논문집 A
    • /
    • pp.79-82
    • /
    • 2002
  • The addition of switches to a distribution feeder does, in general, increase reliability by decreasing the duration of the outage of many to the customers on the feeder. To cover its service area so that feeder-level delivery reaches sufficiently close to all customers, feeders typically split their routes many times, in what is often called a lateral feeder. It is interesting to note, however, that the effectiveness of a switch is very much dependent on the types of lateral feeder. The types of lateral are classified into two types. The first is loop lateral feeder that can connect its load to an adjacent feeder through a tie line in case that a fault occurs in its feeder and it is laid out so that every feeder has complete fault backup through re-switching of its loads to other sources like a main feeder. The second is the radial lateral feeder cannot connect its load to an adjacent line, no provision is made for contingency backup of feeders. There are no other circuits in the radial lateral feeder form which to restore power. In this study, we evaluate the effectiveness of a switch installation between on the radial and loop lateral feeders to increase reliability by decreasing the duration of the outage. These results can help power utility to design the switch layouts on the radial and loop lateral feeder system.

  • PDF

향후 신뢰도 목표를 만족하는 개폐기 설치 기준 제시 (The Switch Installation Criteria For Satisfying Future Reliability Goal)

  • 조남훈;오정환;하복남;이흥호
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제51권9호
    • /
    • pp.433-440
    • /
    • 2002
  • The addition of switches to a distribution feeder does, in general, increase reliability by decreasing the duration of the outage of many to the customers on the feeder. To cover its service area so that feeder-level delivery reaches sufficiently close to all customers, feeders typically split their routes many times, in what is often called a lateral feeder. It is interesting to note, however, that the effectiveness of a switch is very much dependent on the types of lateral feeder. The types of lateral are classified into two types. The first is loop lateral feeder that can connect its load to an adjacent feeder through a tie line in case that a fault occurs in its feeder and it is laid out so that every feeder has complete fault backup through re-switching of its loads to other sources like a main feeder The second is the radial lateral feeder cannot connect its load to an adjacent line, no provision is made for contingency backup of feeders. There are no other circuits in the radial lateral feeder form which to restore power. In this study, we evaluate the effectiveness of a switch installation between on the radial and loop lateral feeders to increase reliability by decreasing the duration of the outage. These results can help power utility to design the switch layouts on the radial and loop lateral feeder system.

Feeder Loop Line Control for the Voltage Stabilization of Distribution Network with Distributed Generators

  • Jeong, Bong-Sang;Chun, Yeong-Han
    • Journal of Electrical Engineering and Technology
    • /
    • 제9권1호
    • /
    • pp.1-5
    • /
    • 2014
  • When renewable sources are connected to the distribution network in the form of a distributed generators(DGs), the effect of intermittent output appears as voltage fluctuation. The surplus power at the consumer ends results in the reverse power flow to the distribution network. This reverse power flow causes several problems to the distribution network such as overvoltage. Application of the reactive power control equipment and power flow control by means of BTB inverter have been suggested as the general solutions to overcome the overvoltage, but they are not economically feasible since they require high cost devices. Herein, we suggest the feeder loop line switch control method to solve the problem.

국내 배편계통의 최적 연계(안) (The Optimal Number of Dividing and Connecting Per Feeder in Korea Distribution System)

  • 조남훈;김건중;김재철
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제51권7호
    • /
    • pp.349-361
    • /
    • 2002
  • Occasionally, equipment in a distribution system fails due to damage from weather, vandalism, or other causes. Failures and unexpected events do not always occur as and where expected. Therefore, a good contingency plan, multi-zone or otherwise, provides flexibility by locating switches at various strategic locations so that parts of a feeder can be picked up in the event of line outages at various places. It is possible to create feeder system layout that achieve remarkable contingency support economics, even as their normal peak loading levels approach thermal capacity, by utilizing six, seven, or even nine switchable zones per feeder. But many switchable zones per feeder are of questionable practicality and effectiveness, because of the complexity and time required for the switching operation. In practice, a zonal scheme with between three and four zones will usually provide complete contingency backup for all feeders. Line switches have both capital and maintenance costs, the planning for multi-zonal schemes is considerably more difficult than or loop or single-zone systems, and the required switching operations required during contingencies take more time. But multi-zonal schemes are used because these costs come to far less than the cost of additional capacity required for loop or single-zone. In this paper, we present the optimal number of switchable zones per feeder in Kora distribution system.

Calculation of Equivalent Feeder Geometries for CANDU Transient Simulations

  • Cho, Seungyon;Muzumdar, Ajit
    • 한국원자력학회:학술대회논문집
    • /
    • 한국원자력학회 1995년도 추계학술발표회논문집(1)
    • /
    • pp.429-436
    • /
    • 1995
  • This paper describes a methodology for determination of representative CANDU feeder geometry and the pressure drops between inlet/outlet header and fuel channel in the primary loop. A code, MEDOC, was developed based on this methodology and helps perform a calculation of equivalent feeder geometry for a selected channel group on the basis of feeder geometry data (fluid volume, mass flow rate, loss factor) and given property data pressure, quality, density) at inlet/outlet header. The equivalent feeder geometry calculated based on this methodology will be useful fur the transient thermohydraulic analysis of the primary heat transport system for the CANDU heavy water-cooled pressure tube reactor.

  • PDF

적정 배전계통 구성을 위한 선로분할 효과 분석 (Analysis of Distribution Line Sectionalizing Effects for The Probable Distribution System Configuration)

  • 김재환;하복남;남기영;이주광
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1993년도 하계학술대회 논문집 A
    • /
    • pp.86-89
    • /
    • 1993
  • This paper contains the various effect of distribution feeder sectionalizing by distribution automation. The effect by automatic sectionalizing switch and the effect by manual switch are analyzed and shown according to the radial feeder and the loop feeder respectively. Based on the reliability analysis, the reference for the feeder division and sectionalization is recommended. Also, the necessary number of manual switch where the automatic switch is installed is recommended through the reliability analysis.

  • PDF

Dimensional Stability of Single Jersey Fabrics of $LincLITE^{(R)}$ and Conventional Yarns. I.

  • Park, Shin-Woong;Collie, Stewart;Herath, C.N.;Kang, Bok-Choon
    • Fibers and Polymers
    • /
    • 제7권4호
    • /
    • pp.398-403
    • /
    • 2006
  • Dimensional constants (k values) of single jersey fabrics made from $LincLITE^{(R)}$ and conventional yams are calculated under dry, steam, full relaxation treatments. Fabrics were made under different tightness factors such as high, medium and low with different twist factors, twist directions and feeder blending. $LincLITE^{(R)}$ yarns made to get soft and bulkier effects with yam count of 39 tex and conventional yams made into 39 tex and 48 tex yam counts. Various effects on K values are analysed using correlation coefficients. K-values are increased with relaxation progression and have shown some differences between in $LincLITE^{(R)}$ and conventional fabrics, and feeder blended fabrics. Loop shape factor is highly affected by tightness factor, relaxation and feeder blending in $LincLITE^{(R)}$ fabrics, whereas twist factor not significantly effects on loop shape factor in conventional fabrics. Stitch density significantly increases with relaxation in conventional fabrics and no significant effect shows with $LincLITE^{(R)}$ fabrics.

휴대용 스마트 단말기 안테나 타입에 따른 디지털 노이즈와 안테나의 결합 분석 (Analysis of Coupling Between Digital Noise and Portable Smart Terminal Antenna According to Antenna Types)

  • 김준철
    • 전기전자학회논문지
    • /
    • 제23권3호
    • /
    • pp.873-877
    • /
    • 2019
  • 본 논문에서는 휴대단말기 안테나의 대표적 형태인 역 F 안테나(Inverted F Antenna, IFA)와 루프(Loop) 안테나에 따른 디지털 노이즈의 결합(coupling) 정도를 특성모드(characteristic mode)를 사용하여 분석한다. 우선, 안테나를 포함한 인쇄회로기판(Printed Circuit Board, PCB)의 특성모드 전류와 디지털 신호라인의 방향에 따른 결합 정도를 비교 분석하고, 이를 토대로 휴대단말기의 WiFi 안테나와 전방 카메라(front camera)의 결합에 대해서 분석한다. 분석을 위해서 카메라 모듈의 FPCB의 디지털 신호선과 그라운드 선을 PCB 그라운드의 특성 모드를 여기(excitation) 시키는 루프형 피더(feeder)로 모델링 했고, 안테나 타입(type)에 따른 노이즈 결합 변화에 대해서 분석을 했다.