• Title/Summary/Keyword: loop feeder

Search Result 20, Processing Time 0.022 seconds

Reliability analysis of the switch installation in the main feeder and in the radial/loop lateral feeders in distribution system (간선 및 분기선의 개폐기 설치 효과 분석(II))

  • Cho, Nam-Hun;O, Jae-Hyeong;Lee, Heung-Ho;Ha, Bok-Nam
    • Proceedings of the KIEE Conference
    • /
    • 2002.07a
    • /
    • pp.83-86
    • /
    • 2002
  • In this study, we evaluate the effectiveness of a switch installation between on the radial and loop lateral feeders to increase reliability by decreasing the duration of the outage. These results can help power utility to design the switch layouts on the radial and loop lateral feeder system.

  • PDF

Reliability analysis of the switch installation in the main feeder and in the radial/loop lateral feeders in distribution system (간선 및 분기선의 개폐기 설치 효과 분석(I))

  • Cho, Nam-Hun;O, Jae-Hyeong;Lee, Heung-Ho;Ha, Bok-Nam
    • Proceedings of the KIEE Conference
    • /
    • 2002.07a
    • /
    • pp.79-82
    • /
    • 2002
  • The addition of switches to a distribution feeder does, in general, increase reliability by decreasing the duration of the outage of many to the customers on the feeder. To cover its service area so that feeder-level delivery reaches sufficiently close to all customers, feeders typically split their routes many times, in what is often called a lateral feeder. It is interesting to note, however, that the effectiveness of a switch is very much dependent on the types of lateral feeder. The types of lateral are classified into two types. The first is loop lateral feeder that can connect its load to an adjacent feeder through a tie line in case that a fault occurs in its feeder and it is laid out so that every feeder has complete fault backup through re-switching of its loads to other sources like a main feeder. The second is the radial lateral feeder cannot connect its load to an adjacent line, no provision is made for contingency backup of feeders. There are no other circuits in the radial lateral feeder form which to restore power. In this study, we evaluate the effectiveness of a switch installation between on the radial and loop lateral feeders to increase reliability by decreasing the duration of the outage. These results can help power utility to design the switch layouts on the radial and loop lateral feeder system.

  • PDF

The Switch Installation Criteria For Satisfying Future Reliability Goal (향후 신뢰도 목표를 만족하는 개폐기 설치 기준 제시)

  • Jo, Nam-Hun;O, Jeong-Hwan;Ha, Bok-Nam;Lee, Heung-Ho
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.51 no.9
    • /
    • pp.433-440
    • /
    • 2002
  • The addition of switches to a distribution feeder does, in general, increase reliability by decreasing the duration of the outage of many to the customers on the feeder. To cover its service area so that feeder-level delivery reaches sufficiently close to all customers, feeders typically split their routes many times, in what is often called a lateral feeder. It is interesting to note, however, that the effectiveness of a switch is very much dependent on the types of lateral feeder. The types of lateral are classified into two types. The first is loop lateral feeder that can connect its load to an adjacent feeder through a tie line in case that a fault occurs in its feeder and it is laid out so that every feeder has complete fault backup through re-switching of its loads to other sources like a main feeder The second is the radial lateral feeder cannot connect its load to an adjacent line, no provision is made for contingency backup of feeders. There are no other circuits in the radial lateral feeder form which to restore power. In this study, we evaluate the effectiveness of a switch installation between on the radial and loop lateral feeders to increase reliability by decreasing the duration of the outage. These results can help power utility to design the switch layouts on the radial and loop lateral feeder system.

Feeder Loop Line Control for the Voltage Stabilization of Distribution Network with Distributed Generators

  • Jeong, Bong-Sang;Chun, Yeong-Han
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.1
    • /
    • pp.1-5
    • /
    • 2014
  • When renewable sources are connected to the distribution network in the form of a distributed generators(DGs), the effect of intermittent output appears as voltage fluctuation. The surplus power at the consumer ends results in the reverse power flow to the distribution network. This reverse power flow causes several problems to the distribution network such as overvoltage. Application of the reactive power control equipment and power flow control by means of BTB inverter have been suggested as the general solutions to overcome the overvoltage, but they are not economically feasible since they require high cost devices. Herein, we suggest the feeder loop line switch control method to solve the problem.

The Optimal Number of Dividing and Connecting Per Feeder in Korea Distribution System (국내 배편계통의 최적 연계(안))

  • Jo, Nam-Hun;Kim, Geon-Jung;Kim, Jae-Cheol
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.51 no.7
    • /
    • pp.349-361
    • /
    • 2002
  • Occasionally, equipment in a distribution system fails due to damage from weather, vandalism, or other causes. Failures and unexpected events do not always occur as and where expected. Therefore, a good contingency plan, multi-zone or otherwise, provides flexibility by locating switches at various strategic locations so that parts of a feeder can be picked up in the event of line outages at various places. It is possible to create feeder system layout that achieve remarkable contingency support economics, even as their normal peak loading levels approach thermal capacity, by utilizing six, seven, or even nine switchable zones per feeder. But many switchable zones per feeder are of questionable practicality and effectiveness, because of the complexity and time required for the switching operation. In practice, a zonal scheme with between three and four zones will usually provide complete contingency backup for all feeders. Line switches have both capital and maintenance costs, the planning for multi-zonal schemes is considerably more difficult than or loop or single-zone systems, and the required switching operations required during contingencies take more time. But multi-zonal schemes are used because these costs come to far less than the cost of additional capacity required for loop or single-zone. In this paper, we present the optimal number of switchable zones per feeder in Kora distribution system.

Calculation of Equivalent Feeder Geometries for CANDU Transient Simulations

  • Cho, Seungyon;Muzumdar, Ajit
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1995.10a
    • /
    • pp.429-436
    • /
    • 1995
  • This paper describes a methodology for determination of representative CANDU feeder geometry and the pressure drops between inlet/outlet header and fuel channel in the primary loop. A code, MEDOC, was developed based on this methodology and helps perform a calculation of equivalent feeder geometry for a selected channel group on the basis of feeder geometry data (fluid volume, mass flow rate, loss factor) and given property data pressure, quality, density) at inlet/outlet header. The equivalent feeder geometry calculated based on this methodology will be useful fur the transient thermohydraulic analysis of the primary heat transport system for the CANDU heavy water-cooled pressure tube reactor.

  • PDF

Analysis of Distribution Line Sectionalizing Effects for The Probable Distribution System Configuration (적정 배전계통 구성을 위한 선로분할 효과 분석)

  • Kim, J.H.;Ha, B.N.;Nam, K.Y.;Lee, J.K.
    • Proceedings of the KIEE Conference
    • /
    • 1993.07a
    • /
    • pp.86-89
    • /
    • 1993
  • This paper contains the various effect of distribution feeder sectionalizing by distribution automation. The effect by automatic sectionalizing switch and the effect by manual switch are analyzed and shown according to the radial feeder and the loop feeder respectively. Based on the reliability analysis, the reference for the feeder division and sectionalization is recommended. Also, the necessary number of manual switch where the automatic switch is installed is recommended through the reliability analysis.

  • PDF

Dimensional Stability of Single Jersey Fabrics of $LincLITE^{(R)}$ and Conventional Yarns. I.

  • Park, Shin-Woong;Collie, Stewart;Herath, C.N.;Kang, Bok-Choon
    • Fibers and Polymers
    • /
    • v.7 no.4
    • /
    • pp.398-403
    • /
    • 2006
  • Dimensional constants (k values) of single jersey fabrics made from $LincLITE^{(R)}$ and conventional yams are calculated under dry, steam, full relaxation treatments. Fabrics were made under different tightness factors such as high, medium and low with different twist factors, twist directions and feeder blending. $LincLITE^{(R)}$ yarns made to get soft and bulkier effects with yam count of 39 tex and conventional yams made into 39 tex and 48 tex yam counts. Various effects on K values are analysed using correlation coefficients. K-values are increased with relaxation progression and have shown some differences between in $LincLITE^{(R)}$ and conventional fabrics, and feeder blended fabrics. Loop shape factor is highly affected by tightness factor, relaxation and feeder blending in $LincLITE^{(R)}$ fabrics, whereas twist factor not significantly effects on loop shape factor in conventional fabrics. Stitch density significantly increases with relaxation in conventional fabrics and no significant effect shows with $LincLITE^{(R)}$ fabrics.

Analysis of Coupling Between Digital Noise and Portable Smart Terminal Antenna According to Antenna Types (휴대용 스마트 단말기 안테나 타입에 따른 디지털 노이즈와 안테나의 결합 분석)

  • Kim, Joonchul
    • Journal of IKEEE
    • /
    • v.23 no.3
    • /
    • pp.873-877
    • /
    • 2019
  • In this paper, we analyze the degree of digital noise coupling for Inverted F Antenna (IFA) and Loop Antenna, which are representative types of portable terminal antenna, using characteristic mode. Firstly, the degree of coupling according to the direction of digital signal lines and characteristic mode current of the printed circuit board (PCB) including the antenna is compared and analyzed, and based on this result, the coupling between WiFi antenna and the front camera noise is analyzed. For analysis, the digital signal line and ground line of the FPCB of the camera module are modeled as a loop feeder that excites the characteristic mode of the PCB ground and the change of noise coupling according to the antenna types are analyzed.