• 제목/요약/키워드: longitudinal reinforcement ratio

검색결과 199건 처리시간 0.028초

2주형 다주교각의 연성도 및 소성힌지 영역에 관한 연구 (Assessment of Ductility and Plastic Hinge Region of Reinforced Concrete Multi-Column Bent)

  • 변순주;임정순
    • 한국방재학회 논문집
    • /
    • 제6권3호
    • /
    • pp.37-45
    • /
    • 2006
  • 다주교각의 횡방향 철근비에 따른 연성도 및 소성힌지 영역을 단주교각과 비교하여 평가하였다. 횡방향 철근비가 높을수록 연성도 증가는 뚜렷하며 다주교각의 경우 교축직각방향 거동시에는 단주보다 더 큰 연성도 증가를 보였다. 또한 횡철근 배근을 위한 소성힌지영역을 산정하였으며 목표연성도를 크게 할수록 횡구속 철근비의 증가와 함께 횡구속 되어야 하는 소성힌지영역 또한 높아져야함을 밝혔다. 다주교각의 방향별 거동에 따른 소성힌지 영역에는 차이가 있으며, 다주교각의 교축직각방향 거동시에는 모멘트 분포의 차이에 의해 보다 낮은 구간에서 소성변형을 보인다.

Seismic performance and damage assessment of reinforced concrete bridge piers with lap-spliced longitudinal steels

  • Chung, Young S.;Park, Chang K.;Lee, Eun H.
    • Structural Engineering and Mechanics
    • /
    • 제17권1호
    • /
    • pp.99-112
    • /
    • 2004
  • It is known that lap splices in the longitudinal reinforcement of reinforced concrete (RC) bridge columns are not desirable for seismic performance, but it is sometimes unavoidable. Lap splices were practically located in the potential plastic hinge region of most bridge columns that were constructed before the 1992 seismic design provisions of the Korea Bridge Design Specification. The objective of this research is to evaluate the seismic performance of reinforced concrete (RC) bridge piers with lap splicing of longitudinal reinforcement in the plastic hinge region, to develop an enhancement scheme for their seismic capacity by retrofitting with glassfiber sheets, and to assess a damage of bridge columns subjected to seismic loadings for the development of rational seismic design provisions in low or moderate seismicity region. Nine (9) test specimens with an aspect ratio of 4 were made with three confinement ratios and three types of lap splice. Quasi-static tests were conducted in a displacement-controlled way under three different axial loads. A significant reduction of displacement ductility was observed for test columns with lap splices of longitudinal reinforcements, whose displacement ductility could be greatly improved by externally wrapping with glassfiber sheets in the plastic hinge region. A damage of the limited ductile specimen was assessed to be relatively small.

안전한 설계를 위한 철근콘크리트 부재의 최소비틀림철근비 (Minimum Torsional Reinforcement Ratio of Reinforced Concrete Members for Safe Design)

  • 김강수;이득행;박민국;이정윤;주현진
    • 콘크리트학회논문집
    • /
    • 제25권6호
    • /
    • pp.641-648
    • /
    • 2013
  • 현행 설계기준들에서는 비틀림모멘트를 받는 철근콘크리트 부재의 취성적인 파괴를 방지하기 위하여 최소비틀림철근비를 규정하고 있다. 그러나, 국내 현행기준 및 ACI318-11에서 규정하고 있는 최소비틀림철근비 산정식은 종방향 최소철근비, 공간트러스모델의 역학적 평형관계 및 여유강도 확보 등의 측면에서 불합리한 문제점들을 내포하고 있다. 따라서, 이 연구에서는 이러한 문제점을 극복하기 위하여, 보다 합리적이고 충분한 강도여유율을 확보할 수 있는 최소비틀림철근비 산정식을 제안하였다. 또한, 제안식을 기존실험 결과와 비교하여 검증하였으며, 제안모델이 모든 대상실험체들의 최소비틀림철근비를 안전측으로 평가하는 것을 확인하였다.

내부 구속 중공 RC 기둥의 내진성능에 관한 매개 변수 연구 (A Parametric Study on Seismic Performance of Internally Confined Hollow RC Columns)

  • 원덕희;한택희;김정훈;최준호;강영종
    • 복합신소재구조학회 논문집
    • /
    • 제3권2호
    • /
    • pp.28-35
    • /
    • 2012
  • Recently, there is to increase interest in seismic performance of piers. Hollow section is applied to increasing the seismic performance of piers. However, hollow RC pier becomes the biaixial confining state because hollow part is not confined. The pier is developed brittle failure from inner face in hollow part. A tube is inserted in hollow part to become the weakness. This is ICH RC(Internally Confined Hollow RC) pier. This pier is enhanced stiffness, strength, and ductility by core concrete has triaxial confining stress. In this paper is researched about parameters effect the seismic performance. Parameters are hollow ratio, transverse reinforcement, longitudinal reinforcement, and concrete strength.

Seismic tests of RC shear walls confined with high-strength rectangular spiral reinforcement

  • Zhao, Huajing;Li, Qingning;Song, Can;Jiang, Haotian;Zhao, Jun
    • Steel and Composite Structures
    • /
    • 제24권1호
    • /
    • pp.1-13
    • /
    • 2017
  • In order to improve the deformation capacity of the high-strength concrete shear wall, five high-strength concrete shear wall specimens confined with high-strength rectangular spiral reinforcement (HRSR) possessing different parameters, were designed in this paper. One specimen was only adopted high-strength rectangular spiral hoops in embedded columns, the rest of the four specimens were used high-strength rectangular spiral hoops in embedded columns, and high-strength spiral horizontal distribution reinforcement were used in the wall body. Pseudo-static test were carried out on high-strength concrete shear wall specimens confined with HRSR, to study the influence of the factors of longitudinal reinforcement ratio, hoop reinforcement form and the spiral stirrups outer the wall on the failure modes, failure mechanism, ductility, hysteresis characteristics, stiffness degradation and energy dissipation capacity of the shear wall. Results showed that using HRSR as hoops and transverse reinforcements could restrain concrete, slow load carrying capacity degeneration, improve the load carrying capacity and ductility of shear walls; under the vertical force, seismic performance of the RC shear wall with high axial compression ratio can be significantly improved through plastic hinge area or the whole body of the shear wall equipped with outer HRSR.

Prediction of Shear Strength of R/C Beams using Modified Compression Field Theory and ACI Code

  • Park, Sang-Yeol
    • KCI Concrete Journal
    • /
    • 제11권3호
    • /
    • pp.5-17
    • /
    • 1999
  • In recent years. the concept of the modified compression field theory (MCFT) was develped and applied to the analysis of reinforced concrete beams subjected to shear, moment, and axial load. Although too complex for regular use in the shear design or beams. the procedure has value in its ability to provide a rational method of anlysis and design for reinforced concrete members. The objective of this paper is to review the MCFT and apply it for the prediction of the response and shear strength of reinforced concrete beams A Parametric analysis was Performed on a reinforced T-section concrete beam to evaluate and compare the effects of concrete strength. longitudinal reinforcement ratio shear reinforcement ratio, and shear span to depth ratio in two different approaches the MCFT and the ACI code. The analytical study showed that the concrete contribution to shear strength by the MCFT was higher than the one by the ACI code in beams without stirrups, while it was lower with stirrups. On the other hand. shear reinforcement contribution predicted by the MCFT was much higher than the one by the ACI code. This is because the inclination angle of shear crack is much smaller than 45$^{\circ}$assumed in the ACI code.

  • PDF

An Experimental Study on Shear Strength of Chemically-Based Self-Consolidating Concrete

  • Arezoumandi, Mahdi;Volz, Jeffery S.
    • International Journal of Concrete Structures and Materials
    • /
    • 제7권4호
    • /
    • pp.273-285
    • /
    • 2013
  • An experimental investigation was conducted to compare the shear strength of full-scale beams constructed with chemically-based, self-consolidating concrete (SCC) with conventional concrete (CC). This experimental program consisted of 16 rectangular beams (12 without shear reinforcing and 4 with shear reinforcing in the form of stirrups), 8 beams for each mix design. Additionally, three different longitudinal reinforcement ratios were evaluated within the test matrix. The beam specimens were tested under a simply supported four-point condition. The experimental shear strengths of the beams were compared with both the shear provisions of selected standards (U.S., Australia, Canada, Europe, and Japan) and a shear database of CC specimens. This comparison indicates that chemically-based SCC beams possess comparable shear strength as CC beams.

주철근의 1/2이 겹침이음된 중공단면기둥의 횡철근비에 따른 변형성능 (Effect of Transverse Reinforcement Ratios to Deformability of Hollow Sectional Columns having 50% Lap-spliced Longitudinal Bars)

  • 문창현;선창호;정혁창;김익현;이종석
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2006년도 추계 학술발표회 논문집
    • /
    • pp.49-52
    • /
    • 2006
  • Unlike columns having lap-spliced longitudinal bars in plastic hinge regions columns having 50% of lap-spliced bars were reported to have good ductilities relatively. But the effect of transverse reinforcements to deformability is not clearly confirmed. In this study scale models with different confinements were tested under various loading conditions. It was confirmed that deformability was increased with increase of transverse reinforcement ratio regardless of loading conditions and 75% of confinement yielded the satisfactory deformability.

  • PDF

Characteristic Behavior of High-Strength Concrete Columns under Simulated Seismic Loading

  • Hwang, Sun-Kyoung
    • International Journal of Concrete Structures and Materials
    • /
    • 제18권2E호
    • /
    • pp.79-87
    • /
    • 2006
  • The main objective of this research is to examine the behavior of high-strength concrete(HSC) columns. Eight test columns in one-third scale were tested under the conditions of cyclic lateral force and a constant axial load equal to 30% of the column axial load capacity. The $200{\times}200mm$ square columns were reinforced with eight DB bars constituting a longitudinal steel ratio of 2.54% of the column cross-sectional area. The main experimental parameters were volumetric ratio of transverse reinforcement(${\rho}_s$=1.58, 2.25 percent), tie configuration(Type H, Type C, Type D) and tie yield strength($f_{yh}$=548.8 and 779.1 MPa). It was found that the hysteretic behaviour and ultimate deformability of HSC columns were influenced by the amount and details of transverse reinforcement in the potential plastic hinge regions. Columns of transverse reinforcement in the amount 42 percent higher than that required by seismic provisions of ACI 318-02 showed ductile behavior. At 30% of the axial load capacity, it is recommended that the yield strength of transverse reinforcement be held equal to or below 548.8 MPa. Correlations between the calculated damage index and the damage progress are proposed.

전단스팬비가 작은 철근콘크리트 부재의 전단내력평가에 관한 해석적 연구 (An Analytical Study on the Shear Capacity of Reinforced Concrete Member with Small Shear Span Ratio)

  • 강석화
    • 콘크리트학회지
    • /
    • 제6권5호
    • /
    • pp.193-202
    • /
    • 1994
  • 본 연구에서는 전단스팬비가 작은 철근콘크리트부재를 대상으로, 기존에 주로 실험치에만 의존하여 제안되었던 전단내력식에서 탈피하여 극한해석법중의 하계정리를 이용하여 이론적으로 제안하였다. 본연구에서 제안한 모델에서는 아치기구와 트러스기구를 동시에 고려할 수가 있고 각각의 기구에서 분담하은 힘의 크기를 알 수 있다. 또한, 외부에서 가해진 힘이 어떻게 지검에 전달되고 있는가 시각적으로 이해할 수가 있으며, 전단스팬비(a/b), 전단보강근비, 인장철근비 등의 영향을 정량적으로 고려할 수가 있다. 본 연구에서 유도한 전단내력식을 기존의 실험치와 비교한 결과, 본 연구에서 제안한 식은 실험치와 대체로 일치하며, 다른 연구자에 의해 제안된 전단내력평가식에 손색이 없음을 알았다.