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ABSTRACT

In recent years. the concept of the modified compression field theory (MCFT) was develped
and applied to the analysis of reinforced concrete beams subjected to shear, moment. and axial
load. Although too complex for regular use in the shear design of beams, the procedure has
value in its ability to provide a rational method of anlysis and design for reinforced concrete
members. The objective of this paper is to review the MCFT and apply it for the prediction of
the response and shear strength of reinforced concrete beams. A parametric analysis was
performed on a reinforced T-section concrete beam to evaluate and compare the effects of
concrete strength, longitudinal reinforcement ratio, shear reinforcement ratio, and shear span
to depth ratio in two different approaches, the MCFT and the ACI code. The analytical study
showed that the concrete contribution to shear strength by the MCFT was higher than the one
by the ACI code in beams without stirrups, while it was lower with stirrups. On the other
hand, shear reinforcement contribution predicted by the MCFT was much higher than the one
by the ACI code. This is because the inclination angle of shear crack is much smaller than 45°
assumed in the ACI code.

Keywords : modified compression field theory. shear strength, principal strain,

transverse strain, inclination angle, stirrup, shear reinforcement

* KCI member, Full-time lecturer, Dept. of Civil and Environmental Engineering,
Cheju National University, Korea

KCl Concrete Journal (VOL.11 No.3 1999.7) 5



1. INTRODUCTION

It is now over twenty years since the
ACI-ASCE Shear Committee concluded the
introduction to its state-of-the-art report(1)
with the words: "During the next decade it
is hoped that the design regulations for
shear strength can be integrated, simplified
and given a physical significance so that
designers can approach unusual design
problems in a rational manner.”

Although advances have been made during
the past 20 years, the ACI shear design
equations have not changed. Even in the
ACI 318-95 Building Code(3], there is little
change in Chapter 11, Shear and Torsion.
The main reason for this fact is thought
that the ACI shear design procedure is very
simple for a designer to approach, even
thought it lacks rationality and generality.

Recent years, much work has been
directed toward formulating a more general
and rational model. In particular, much
experimental and analytical research has
been conducted at the university of Toronto
toward formulating a more general and
rational model. From the data acquired, the
modified compression field theory(9) was
developed. In this theoretical model, cracked
concrete is treated as a new material with
its own stress-strain  characteristics.
Equilibrium, compatibility, and constitutive
relationships are formulated to determine
the load-deformation response of members
subjected to shear.

The concept of the modified compression

field theory can be applied to the analysis

of reinforced concrete beams subjected to
shear, moment, and axial load. Although
too complex for regular use in the shear
design of beams, the procedure has value in
its ability to provide a rational method of
analysis and design for members having
unusual or complex geometry or loading.

The objective of this paper is to review
the modified compression field theory
(MCFT) and the ACI code. and apply it for
the prediction of the response and the shear
strength of reinforced concrete beams. The
shear strengths predicted by the MCFT are
compared with those by the ACI code. A
parametric analysis was performed to
compare the effects of concrete strength,
longitudinal reinforcement ratio, shear
reinforcement ratio, and shear span to
depth ratio in two different approaches, the
MCFT and the ACI code.

2. BACKGROUND

2.1 ACI Building Code

The current ACI design code for reinforced
concrete beams in shear is based on the 45°
truss analogy developed a century ago.
However, many experimental tests revealed
that the 45° truss analogy was quite
conservative. This conservatism of the 45°
truss model is attributed to the neglect of
tensile stresses in concrete and the choice of
45° for compressive strut inclination.

Consequently, the ACI Building Code
added an empirical correction term to the

truss equation. The ACI code in 1910
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40psi(0.28MPa)

contribution for shear. The shear resistance

accepted concrete
provided by concrete was revised into the
current form for shear in 1995. This added
shear capacity is taken as being equal to
the shear at the commencement of diagonal
cracking and is commonly referred to as the
"conerete contribution.”

In the current ACI code, the design shear

strength, ¢éV, , should be greater than the

factored shear, V, .

pV,2V, N
Where the nominal shear strength, V,. is
given by

V,= V.4V, (2)

where V. is the shear carried by concrete
and V; is the shear carried by stirrups.
concrete

Typically, for reinforced

members, V., 1is calculated from the

following equation.
Vo= (L9 it 25000, b, d< (3 Fbud  (3)

the ACI
code permits the shear at flexure-shear

As a simplification to Eq.(3)

cracking for reinforced concrete beams to
be taken as

V=@V )b (4)

The concrete contribution, Ve, s
actually the sum of at least three
separate components: (a) shear resistance
of the compression concrete above the top
of diagonal crack, (b) aggregate interlock
along the diagonal crack, and (¢) dowel
resistance provided by the longitudinal
reinforcement.

The 45° truss equation is used to
calculate the steel contribution, V,. For
a beam containing stirrups perpendicular
to its axis,
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To avoid diagonal crushing of the
concrete and to limit diagonal cracking at
service loads, the steel contribution is
limited to

V.<(8VF)b.d (6)

Beams that do not contain web
reinforcement may fail in a relatively
brittle manner immediately after the
formation of the first diagonal crack. As
a consequence, the shear capacity of such
members can be substantially reduced by
the factors such as repeated loading,
tensile stresses caused by the restraint of
shrinkage strains, thermal strains, or
creep strains, stress concentrations due to
discontinuities such as web openings,
termination of flexural reinforcement. To
prevent this kind of failure the current
ACI Code requires a minimum amount of
web reinforcement where the factored
shear force, V,, exceeds ¢V,./2. The

minimum amount required by the code is

= bus
A,=502 (7

2.2 Compression Field Theory(6)

In 1929, Wagner developed the tension
field theory in analogizing the post bucking
shear resistance of thin-webbed metal
girder. He assumed that after buckling, the
thin webs have no resistance to compression
and the shear is carried by a field of
diagonal tension and that the angle of
inclination of the diagonal tensile stresses
coincide with the angle of inclination of the
principal tensile strains.

By applying the tension field theory to

reinforced concrete, and assuming that after



cracking, the concrete carries no tension
and that the shear is carried by a field of
following

diagonal compression, the

compatibility relationships, relating

inclination angle, #, and three strain, e,

&, and ¢, are obtained.

tan 2= —2—2% (8)
€ &y

where e,= longitudinal strain of web,
e;= transverse strain
&= principal compressive strain

For cracked concrete these compatibility
relationships are expressed in terms of
the average strains. Fig.1 shows these
strains in the Mohr's circle.

T2l &
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I Y
£
‘\i’g\b\ N
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(b) Mohr's circie for
average silrains

(a) Average strains in
cracked element

Fig.1 Compatibility conditions for cracked web element

From the Mohr's circle, the principal
tensile strain in the web is
ei=¢&,+&— & (9)
and the shear strain in the web is
7ey=2(e,— &) cot § (10)
If we consider a symmetrical reinforced
concrete beam subjected to shear, there
are four unknowns: the stress in the
longitudinal bars(f,), the stress in the
stirrups( f,), the diagonal compressive

stress in the concrete(#), and the

inclination( 8) of these diagonal

compressive stresses. By using the
equilibrium, compatibility, and stress-
strain relationships for materials, the four
unknown can be found and the load-
deformation response can be determined.
Based on the tests of reinforced
concrete elements in pure shear, Vecchio
and Collins(7) suggested the following

stress-strain relationship.
fr= Fome [255) = (512 (11)
6C EC

f2m — 1
. 0.8+ 170e;

<1.0

where e; is the strain at the peak

concrete stress, f.

2.3 Modified Compression Field
Theory(7)

Because the compression field theory
neglects the contribution of tensile stresses
in cracked concrete, it gives conservative
estimates of shear strength. The modified
compression field theory (MCFT) accounts
for the contribution of the tensile stresses
in the concrete between cracks.

The equilibrium conditions for the MCFT
are introduced in Fig.2. The shear will be
resisted by the

diagonal compressive

stresses, f2. together with the diagonal
tensile stresses, fi. The tensile stresses in
the diagonally cracked concrete vary in
magnitude from zero at the crack locations
to peak values between the cracks.

From the Mohr's stress circle shown in
Fig.2, the following relationship for the
principal compressive stress, f,, can be

derived:
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Fig.2 Equilibrium conditions of MCFT

fo=(tan§+ cot )v— fi, (12)

__V
where v= bid
The vertical equilibrium requirement can
be expressed as

A fo=(fysin*0— ficos 20)b,s (13)
Substituting for £ from Eq.(12) gives
V= fib.Jdcot 0+ Ady jdcot 8 (14)

s

The Eq.(14) has the same form as the
ACI shear equation V.+V; .

The longitudinal equilibrium requires the
following expression.

Afi= (fyc08 20— fisin20)b jd (15)
Substituting for £ from Eq.(12) gives

Based on their tests of reinforced
concrete panels in pure shear, Vecchio
and Collins(9) recommended the following
relationships of average tensile stress vs.
average tensile strain.

if e1<e,, then fi=FE.e& 17
if &)¢., then f= lf"‘gggel (18)

where @; and a; are factors accounting

for the Dbond characteristics of the
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reinforcement and the type of loading.
The shear forces transmitting tension
across the cracks will require local shear

stresses, v;, on the crack surfaces as

shown in Fig.3. The limiting value of

vy 1S suggested as
2.16Vf.

24w
a+0.63

where w is the crack width and a is the

Vci =

= (19)
0.3+

maximum aggregate size.

= T * S
T [y
- ;9 7

{c} Local stresses ai a crack

(b] Calculated average
stresses

Fig.3 Transmitting forces across cracks.

Because two sets of stresses shown in
Fig.5(b) and (¢) must be statically
equivalent, this requirement gives
b.jd
sin §

AS(—2L )+ f cos 0=

stan 4

y .
A,f,,y(—'L“stan 7 )t vabJid (20)

and f; must be limited to

f1=vdtan€+f—bl;(fvy_fu) (21)

The crack width, w, to be wused in
Eq.(19) can be taken as the product of
the principal tensile strain, e;, and the
average spacing of the diagonal cracks.

W= €S mg (22)
It is suggested that the spacing of the



inclined cracks be taken as

_ 1
Smo= ( sind cosﬁ) (23)

SW va
where s,, and s,, are the crack spacing

indicative of the crack control

characteristics of the longitudinal and
transverse reinforcement, respectively.

According to the CEB-FIP Code crack
spacing is expressed as follows:

_ i A
S = 20 e+ 7)0. 25k (24)

- Sc o
Sow=2(c,+ 10 )0.254, 0, (25)

where p,=A,/(b,s) and po,=A4/A, ., and
ky is 0.4 for deformed bars.

For the two sets of stresses in Fig.3 to
be the same horizontal force the following
condition should be satisfied

Agfy2 Agfot Hibid+
U= 4 = ) ouddeot ™8 (26)

Above procedure can be summarized as

the following steps:

(1) Choose a value of &

(2) Estimate ¢

(3) Calculate w from Eqs. (22), (23),
(24) and (25)

(4) Estimate f,

(5) Calculate £, from Egs. (18) and
(21) and take the smaller value

(6) Calculate V from Eq.(14)

(7) Calculate f; from Eq.(12)

(8) Calculate famx from Eq.(11)

(9) Check that fo<fomu. If 27 fomax.
return to step (1) and choose a
smaller e,

(10) Calculate e; from Eq.(11)

(11) Calculate &, and &, from Egs. (8)
and (9)

(12) Calculate f,=E&<f,.

10

(13) Check estimate of f,. If necessary,
revise the estimate and return to
step (5).

(14) Calculate fo=Ee&.<f,.

(15) Calculate the axial force on the

member.

N=Aufox——pis + fibujd— £ A= bid)

where £, is the axial compressive

stress outside the web.
If e is tensile, then f.=0,
otherwise, f.=£[2(55)—(=5)7]

& &

(16) Check the axial load. If N is not
equal to the desired value, make
new estimate of @ and return to
step (2). Increasing @ increases N.

(17) Check that the
reinforcement can  satisfy the
condition of Eq.(26). If it does not,
lower f; and return to step (6).

longitudinal

3. PRAMERTRIC ANALYSIS
PROGRAM

To compare the shear strengths
predicted by the MCFT with those by the
ACI code, a T-section reinforced concrete
beam was selected. With this test beam,
a parametric analysis was performed. The
parameters include concrete compressive
strength, longitudinal reinforcement ratio,
shear reinforcement ratio, and shear span
to depth ratio. Also, the deformation
charateristics, such as transverse and
principal strain of concrete, inclination
angle of compressive stress, and
curvature, are presented for the test
beam with stirrups and without stirrups.
All test beams with the parameters were

designed to fail in shear.

KCI Concrete Journal (VOL.11 No.3 1999.7)



3.1 Test Beam

3.1.1 Material Properties
The following material propertis of the
test beam were assumed for parametric
analysis.
(1) Concrete
- Normal weight concrete
- Stress-strain relationship

. £.{6000psi(41MPa):

fo_otd _(Egy

P )
. f. 26000psi(41MPa):

fo__ nlegled)

fc n—].‘l"(ch/Ec)”k

_ /e _ fe

where »=0.8+ 3500 * k=0.67+ 9000

(2) Reinforcing steel :
- Deformed bar
- f,=60ksi(4.14GPa)

- Perfect elastic-plastic behavior

3.1.2 Beam Details

Fig.4 shows the details of the test
beam and loading set-up. The following
conditions are given for a standard beam
with no parameter.

- Concrete compressive strength:
£. = 4000psi(28 MPa)

- Longitudinal reinforcement:
4#10(D32), A,=5.08 i?(3280mm?),
o, =0.0467=0.87 0

- Web reinforcement: 2#3(D9.5) U-stirr
A,=0.22in%(140mm?). s=6"(150mm)

0,=0.0042
- Shear span to depth ratio: a/d=3.5

KCl Concrete Journal (VOL.11 No.3 1999.7)
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Fig.4 Details of the test beam

3.2 Parameters

3.2.1 Deformation Charateristics
- Without stirrups
- With stirrups

3.2.2 Concrete Compressive Strength
- £ = 3000 -7000psi(21-48MPa)

3.2.3 Longitudinal Reinforcement Ratio
- 4#7(D22), 0,=0.022, 0=0.30 0max

- 4#8(D25), 0,=0.029, ©0=0.41 opax
- 4#9(D29), 0,=0.037, 0=0.54 0 ya
- 4#10(D32), 0,=0.047, 0=0.87 Ommax
- 4#11(D35), 0,=0.057, 0=1.06 0ma

3.2.4 Web Reinforcement Ratio
- 2#2(DB)@7"(178mm), p,=0.0019

- 2#2(D6)@6"(152mm), p,=0.0022
- 2#2(D6)@5"(127mm), 0,=0.0027
2#2(D6) @4"(102mm), p,=0.0033
243(D9.5)@7"(178mm), 0,=0.0042
2#3(D9,5) @6"(152mm), 0,=0.0049
243(D9.5)@5”(127mm), 0,=0.0059
2#3(D9.5) @4"(102mm), 0,=0.0073

i
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3.2.5 Shear Span to Depth Ratio
- a/d=2.0-6.0

3.3 Computer Program Response

To apply MCFT for the prediction of the
response and the shear strength of a
reinforced concrete beam, the computer
program RESPONSE was wused, because
MCFT is complex and time consuming to
use. The program RESPONSE was provided
by Collins and Mitchell(7). The RESPONSE
can be used to predict the load-deformation
response of a reinforced (or prestressed)
concrete section subject to shear, moment
and axial load.

Under the combined action of shear and
moment, the longitudinal strains vary
over the depth of the beam. Because the
biaxial stresses and strains vary over the
height of the beam, the inclination, 8 . of
the principal compressive stress changes
over the height of beam, becoming larger
near the flexural tension face and smaller
near the flexural compression face.

To reduce the computation time, the
following assumptions were made in the
program:-

1) The shear stress is assumed to be
uniform.

2) The biaxial stresses and strains are
considered at just one level of the
web and are assumed that they
remain constant over the depth of
the web.

Considering the redistribution of shear
Mitchell (7]
recommended the use of the longitudinal

stresses, Collins and

strain at mid-depth of the web as &, in

members with web reinforcement. Also,
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they commented that it is reasonable to
use the highest longitudinal strain in the
web as &, In members without web

reinforcement.

4. RESULTS AND DISCUSSIONS

4.1 Deformarion Charateristics

Fig.5 shows the applied shear force and
transverse and principal strains of the
test beams. The strain responses of the
beam with stirrups is roughly tri-linear
with a change in their slopes at the level
of cracking and stirrup yielding loads. On
the contrary, the strain response without
stirrups is curvi-linear, which is similar
in shape to the stress-strain curve of
concrete. At the maxium shear strength,
the beam with stirrups has much larger
transverse and principal strains than
those without stirrups. This fact is
believed to be due to the shear
reinforcement provided. Also, the beam
with stirrups is more ductile due to the
shear reinforcement yielding after
reaching its peak shear strength. On the
contrary, the beam without stirrups
shows sudden failure after reaching its
maximum shear strength.

60 T T T T T T
4250

50
—_ 200
S40r g
8 150
S F S e Transverse strain (no stirrup) g
§ —— Principal strain ?no sthlrrup) 100 5
220 | --»-- Transverse strain (stirrup) e
2 ; s . . ]

; —e— Principal strain {stirrup})
10 50
0 1 L 0

~

0 1 2 3 4 5 6
Strain (1/1000)

Fig.5 Shear force-strain curves
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Fig.6 Shear force-inclination angle curves

As shown in Fig.6, the inclination
angles of the compressive stress in the
web concrete are about 60° before
diagonal cracking. After cracking,
inclination angles decrease radically and
reach about 40° and 30° at their peak
shear shear strengths, without stirrups
and with stirrups, respectively. The
inclination angle at stirrup yielding is
about 33° which is considerably lower
than 45° assumed in the ACI code. This
fact implies that the ACI code is
conservative in evaluating the
contribution of shear reinforcement to

shear strength compared to the MCFT.

60 . T T
250
50 |
4 200
40 | e
x
{150

Shear force (kip}
(]
o
T

Dl Rl — Without stirrup
g ——— With stirrup

1 s 1 [}
0 50 100 150 200
Curvature (1/1000 radian)

Fig.7 Shear force—curvature relationship

Fig.7 shows a clear linear relationship
between the shear force and the
curvature in the beams which fail in
shear, unlike in the beams which fail in

KCl Concrete Journal (VOL.11 No.3 1999.7)

flexure. From this fact, it can be stated
that shear failure is very brittle unlike
flexural failure. Also, the beam without
stirrups has little deformability.

4.2 Concrete Strength

Concrete strength (MPa)

20 30 40 50
25 T T T T
1100
20t
180
=z Z
X X
215 <
=) 160D
8 g
@ @
’(310_ —a—ACI Code a
(] 4 ()]
p —+—MCFT 40<
5f 120
0 1 1 1 1 1 0

2000 3000 4000 5000 6000 7000 8000
Concrete strength (psi)

Fig.8 Influence of concrete strength on shear
strength of beam without stirrups.

To evaluate the effect of concrete
strength on shear strength, shear
resisting capacities are predicted using
the MCFT and the ACI code for different

concrete strength.

As can be seen in Fig.8, the predicted
shear strength by the ACI code increases
curvi-linearly with large curvature

(almost  linearly) as the concrete
compressive strength increases in the
beam without stirrups. On the contrary,
the shear strength predicted by the
MCFT slightly decreases linearly with an
strength.  The

increase of concrete
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decrease in shear strength by the MCFET
is attributed to the fact that the principal
stress in the web concrete increases
faster than the cracking stress(f,) as the
concrete strength increases. The shear
strengths predicted by the MCFT are
about 25% higher and 15% lower than
those by the ACI code in the concrete of

3000psi(21MPa) and 7000psi(48MPa),
respectively.
Concrete strength (MPa)
20 30 40 50
60 T T T T
V_(MCFT) 1250
— n
50 |
V (ACI)
" 1 200

40 V_(MCFT)
2 z
£ 11502
& £
g30f V_(ACI) o
] [ ] 1
g @
5 4100 8
w

“l e/?/vc(?__.,___;i/:—; ’

V (MCFT) i
w0t ¢ 50
0 , , . X . o

2000 3000 4000 5000 6000 7000 8000
Concrete strength (psi)

Fig.9 Effect of concrete strength on shear strength

The comparison of the shear strengths
for different concrete strength in the
beam with stirrups is shown in Fig.9.
The concrete contribution to the shear
strength predicted using the MCFT is
little affected by the concrete compressive
strength. The concrete contribution by the
ACI code is about 5% and 35% higher
than those by the MCFT in the concrete
of 3000psi(21MPa) and 7000psi(48MPa).

While shear reinforcement contibution
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predicted by the MCFT slightly decreases
linearly with an increase of concrete
strength. The stirrup contribution to the
shear strength by the MCFT is
considerably higher(about 45% and 35%
higher) than those by the ACI code in the
the concrete of 3000psi(21MPa) and 7000
psi(48MPa), respectively. The reason for
this higher prediction is that the inclined
crack angle in the beam with stirrups is
much smaller than 45° assumed in the
ACI code. Consequently, the nominal
shear strengths by the MCFT are about
25% and 10% higher than those by the
ACI code in the concrete of 3000psi
(21MPa) and 7000psi(48MPa),
respectively.

4.3 Longitudinal Reinforcement Ratio
To investigate the effect of longitudinal

reinforcement ratio, shear strengths were
predicted using the MCFT and the ACI

code for different longitudinal
reinforcement ratio.
25
4100
20 |
480
g =
2. Zz
P 15 >
- e
g 60 5
3 2
§ 10} —=— ACI Code 1o <
w —a— MCFT Theory %
5r 420
o 1 1 1 1 1 O
2 3 4 5 6
Longitudinal reinforcement ratio (%)
Fig.10 Effect of longitudinal reinforcement
ratio on shear strength without stirrups.
KCI Concrete Journal (VOL.11 No.3 1999.7)



As shown in Fig.10, the predicted shear
strengths of the beam without shear
reinforcement increases almost linearly
with an  increase of  longitudinal
reinforcement ratio in the two methods.
The shear strength by the MCFT is about
10% higher in the beam with the
maximum reinforcement ratio.

Unlike in the beam without stirrups,
the concrete contribution in the beam
with stirrups by the MCFT is smaller
than that by the ACI code as shown in
Fig.11. The stirrup contribution to shear
strength increased curvi-lineraly as the
reinforcement ratio increases. As a result,
the nominal shear strengths by the MCFT
are about 20% smaller and 20% higher in
the beams with 30% and 106% of the
maximum reinforcement, respectively. In
normally reinforced beam with about 60%
of the maximum reinforcement, the MCFT
gives about 15% higher prediction of
shear strength in this test beam.

60
4 250
o b V (MCFT,
V_(ACH)
" 1 200

40 -
< g
£ 1 150 £
[= o
g 30 V (ACI) 5
B e @
<
& 1100 &

20

v (ACI)
B,c/e———‘e”’__e/—a
MCFT .
10t /ﬁ\" 50
0 Il 1 L 1 Il 0
2 3 4 5 6

Longitudinal reinforcement ratio (%)

Fig.11 Effect of longitudinal reinforcement
ratio on shear strength with stirrups.
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4.4 Web Reinforcement Ratio
Beams with different shear
reinforcement ratio were analyzed to
investigate the effect of web reinforcement
ratio on shear strength. As can be seen
in Fig.12, the ACI code gives constant
concrete contribution and linearly
proportional stirrup contribution to web
reinforcement ratio. On the other hand,
the MCFT predicts lower contribution of
the concrete and higher contribution of
the shear reinforcement. Consequently,
the MCFT gives higher nominal shear
strength in the beam with lower shear
reinforcement ratio. From the analysis
results shown in Fig.12, it is assumed
that the shear resistance capacity
predicted by the MCFT may be lower
than that by the ACI code if sufficient
stirrups were provided enough to resist
applied shear force up to flexural failure
load. This is because all beams analyzed
were designed to fail in shear.

70
- 300
60 -
- 250
50 -
~ 4200
g £
c4or £
- [=2
= 1150 §
5301 j&a;
L
1] w
4 100
20 +
10| 750
o L 1 1 1 1 1 1 0

01 02 03 04 05 06 07 08
Web reinforcement ratio (%)

Fig.12 Effect of web reinforcement ratio on shear strength.
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4.5 Shear Span to Depth Ratio

Figs.13 and 14 show the parametric analysis
results for various span to depth ratios in
beams without and with stirrups. As shown in
Fig.13, the ACI code and the MCFT predict
slightly decreasing shear strengths with an
increase of shear span to depth ratio in the
beams without stirrups. The difference between
the predictions by the MCFT and by the ACI
code is less than 10%.

25
4 100

20 -
SRS  ~—URL
15} =
5 Je0 £
c [«
g 0 5
10t =
5 —a—ACI code 4°§
5 —a— MCFT 2
» 5t 1206

0 L 1 1 1 1 0

1 2 3 4 5 6 7

Shear span to depth ratio

Fig.13 Effect of shear span to depth ratio on shear

strength
1 280
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3 41120 §
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w w
20 |
V (ACI) 1 a0
m
wr ‘ 1 40
o 1 1 1 1 1 0
1 2 3 4 5 6 7

Shear span to depth ratio

Fig.14 Effect of shear span to depth ratio on
shear sirength with stirrups.

16

In the beam with stirrups, the shear
reinforcement contribution curve by the
MCFT is roughly bi-linear with a change
in its slope at the shear span to depth
ratio of 4.0. After the change in slope,
the shear strength provided by stirrups
radically decreases as the shear span to
depth ratio increases. As a result, the
nominal shear strength curve is similar to
stirrup contribituion curve in shape.

5. CONCLUSION

The compression field theory enables not
only the prediction of the shear strength
but also the prediction of the response of
reinforced concrete beams subjected to
shear, moment, and axial force. The most
important aspect of this approach is that it
is more general and rational than the ACI
code. However, the procedure is complex
and time consuming for designers to use the
theory.

On the contrary, the ACI code has the
most importent advantage of simplicity.
However, it lacks generality and rationality
in its shear equations based on empirical
test results.

From this analytical study with a selected
test beam, the following conclusions can be
drawn.

1) In the normal strength concrete beam
without stirrups, the predicted shear
strength by the MCFT is a little
higher than the one by the ACI code.

2) In the Dbeam with stirrups, the
concrete contribution to shear strength
predicted by the MCFT is a little
lower than the one by the ACI code.

3) The
‘contribution by  the

predicted shear reinforcement
MCFT is
considerably higher than the one by
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the ACI code. This is because the
inclination angle of compressive stress
in web concrete is much smaller than
45° assumed in the ACI code.

4) The nominal shear strength predicted
by the MCFT
contributions of concrete and stirrups.

depends on the

With lower web reinforcement ratio,

the MCFT gives higher prediction of

nominal shear strength than the ACI

code. However, with higher web
reinforcement ratio, the MCFT predicts
lower shear resisting capacity than the
ACIT code.

5) The predicted shear strength by the
MCFT is little affected by concrete

strength, while the

concrete contribution by the ACI code

compressive

is proportional to square root of
concrete strength.

6) The shear strength predicted by the
MCFT increases curvi-linearly with an
increase of longitudinal reinforcement
ratio, while the concrete contribution
to shear strength by the ACI code
increases linearly.

7) The shear strength by the MCFT
increases curvi-linearly as the web
reinforcement ratio increases, while
the shear strength by the ACI code
increases linearly.

8) The shear strength decreases with an
increase of shear span to depth ratio.
In the beams with stirrups, the shear
strength predicted by the MCFT
radically decreases with a larger shear
span to depth ratio than 4.0.
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