• Title/Summary/Keyword: longitudinal instability

Search Result 105, Processing Time 0.025 seconds

A Generalized Method applied to the Analysis on the Longitudinal Instability of Liquid Propulsion System (액체 추진기관 시스템 축방향불안정성 해석을 위한 동특성 모델링 일반화 기법)

  • Lee, Han-Ju;Kim, Ji-Hoon;Jung, Dong-Hoon;Oh, Seung-Hyub
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.424-427
    • /
    • 2008
  • The longitudinal instability (POGO) of the rocket should not be occurred during the whole flight time for the large class liquid propulsion system to complete a mission successfully. The longitudinal instability is caused by the resonance between the propulsion system and rocket structure in the low frequency range below 50Hz, ordinarily. We can consider various types of propulsion system in the early stage of rocket development. So the longitudinal instability analysis tool is needed for corresponding to each propulsion system. This article deals the generalized method applied to the analysis on the low frequency dynamic characteristics of various types of liquid propulsion system.

  • PDF

AN ANALYTICAL STUDY ON THE DYNAMIC CHARACTERISTICS OF A LIQUID PROPULSION SYSTEM

  • Lee Han Ju;Lim Seok Hee;Jung Dong Ho;Kim Yong Wook;Oh Seung Hyub
    • Bulletin of the Korean Space Science Society
    • /
    • 2004.10b
    • /
    • pp.325-327
    • /
    • 2004
  • The longitudinal instability (POGO) of the rocket should not be occurred during the whole flight time for the large class liquid propulsion system to complete a mission successfully. The longitudinal instability is caused by the resonance between the propulsion system and rocket structure in the low frequency range below 50Hz, ordinarily. Analysis on the low frequency dynamic characteristics on the liquid propulsion system with staged combustion cycle engine system was performed as a preliminary study on the longitudinal instability analysis.

  • PDF

Control of the Longitudinal Instability by Symmetry Breaking in the Can Burner Simulating Annular Nozzle (환형노즐을 모사한 캔 연소기에서 Symmetry Breaking에 의한 종-방향 연소불안정성 제어 연구)

  • Lee, Huido;Kim, Jaehyeon;Lee, Keeman
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.25 no.2
    • /
    • pp.66-78
    • /
    • 2021
  • In this study, the effect of Symmetry Breaking was compared according to the equivalent ratio condition and the number of nozzles where combustion instability occurs in an annular combustor. Generally, due to the relatively short combustor length, a longitudinal instability was less likely to occur in the annular combustor, but the combustion instability sometimes happens when ducts such as transition piece in gas turbine power station are present. In this case, due to the duct, only the longitudinal instability mode is observed. The characteristics of Symmetry Breaking were investigated according to the number of five lean nozzles and the equivalent ratio combination, and as the equivalent ratio decreased, the effect of Symmetry Breaking rapidly occurred, and the instability was dramatically disappeared and the amplitude was greatly reduced. In addition, it was confirmed that as the number of lean nozzles increased, a phenomenon such as a reduction in the equivalent ratio appeared.

An Experimental Study of Instability Mode Analysis in a Model Gas Turbine Combustor (모형 가스터빈 연소기에서의 연소 불안정 모드 분석에 관한 실험적 연구)

  • Lee, Jang-Su;Kim, Min-Ki;Park, Sung-Soon;Lee, Jong-Guen;Yoon, Young-Bin
    • Journal of the Korean Society of Combustion
    • /
    • v.15 no.1
    • /
    • pp.12-21
    • /
    • 2010
  • The main objective of this study was investigation of combustion instability characteristics in a lean partially premixed gas turbine dump combustor. Dynamic pressure transducers were located on combustor and inlet section to observe combustion pressure oscillation and difference at each measurement places. Also flame shape and $CH^*$ chemiluminescence were measured using a high speed ICCD camera. The combustor length was varied in order to have different acoustic characteristics from 800 to 1090 mm. The first section of this paper shows the stability map in model gas turbine combustor. And the effects of combustor length, mixture velocity in the mixing section and equivalence ratio were studied by the pressure perturbation and heat release oscillation. Also, the instability frequency and mode analysis were studied in last two sections. We observed two dominant instability frequencies in this study. Lower frequencies were obtained at lower equivalence ratio region and it was associated with a fundamental longitudinal mode of combustor length. Higher frequencies were observed in higher equivalence ratio conditions. It was related to secondary longitudinal mode of combustor and mixing section. In this instability characteristics, pressure oscillation of mixing section part was larger than pressure oscillation of combustor. As a result, combustion instability was strongly affected by acoustic characteristics of combustor and mixing section geometry.

An Experimental Study on Longitudinal Instability Characteristics with Injector Type in Model Gas Turbine Combustor (모델 가스터빈 연소기에서 인젝터 형태에 따른 종-방향 불안정성 특성에 관한 실험적 연구)

  • Ahn, Jihwan;Kang, Yeonse;Lee, Keeman
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.25 no.2
    • /
    • pp.12-23
    • /
    • 2021
  • In this study, the combustion instability characteristics of low-swirl injector and high-swirl injector is compared by model gas turbine combustor. To compare of unstable behavior in high-swirl injector and low-swirl injector, we performed lots of measurement of combustion instability, with variable of equivalence ratio, combustor length and injector type. The results shown that longitudinal instability occur dominantly in model gas turbine combustor. In addition, it was found that high-swirl injector has more wide range of unstable regime than low-swirl injector. The blockage ratio what one of a parameter in low-swirl injector has not much effected in aspects of overall combustor behavior. Also, revealed that combustion instability occurred in the same combustor length has same properties, regardless of the injector type.

An Analysis on Combustion Instability in Solid Rocket Motor of 4 Slotted Tube Grain (4 Slotted Tube형 고체 추진기관의 연소불안정 거동 현상 분석)

  • Cho, Ki-Hong;Kim, Eui-Yong
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.15 no.4
    • /
    • pp.48-56
    • /
    • 2011
  • A Possibility of combustion instability on longitudinal mode has a high level at large scale of L/D. Solid propellant has a metal particle and a grain of control to pressure oscillation. Solid rocket motor in slotted-tube grain controls pressure oscillation of longitudinal mode. Slotted-tube grain restrains longitudinal 1st pressure oscillation. But cavity volume of aft. insulation ablation amplifies 2nd pressure o scillation by vortext shedding. A study has suppressed combustion instability and vortex shedding by modified 4 slotted tube solid rocket motor design.

An Analysis on Combustion Instability in Solid Rocket Motor of 230mm Grade (230mm급 고체 추진기관의 연소불안정 거동 현상 분석)

  • Kwon, Tae-Hoon;Rho, Tae-Ho;Suh, Hyuk
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.177-180
    • /
    • 2009
  • A Possibility of combustion instability on longitudinal mode has a high level at large scale of L/D. Solid propellant has a metal particle and a grain of control to pressure oscillation. Solid rocket motor in slotted-tube grain controls pressure oscillation of longitudinal mode. If slot length is shot, pressure oscillation of longitudinal mode is amplified by cylinder part after middle phase of total burn time. A study has analyzed pressure oscillation of longitudinal mode at spectrum and acoustic modal analysis at pressure of result on static firing test.

  • PDF

Effect of Mixing Section Resonance Mode on Dynamic Combustion Characteristics in a Swirl-Stabilized Combustor (스월-안정화 연소기에서 혼합기 공진모드가 동적 연소특성에 미치는 영향)

  • Han, Sunwoo;Lee, Shinwoo;Hwang, Donghyun;Ahn, Kyubok
    • Journal of ILASS-Korea
    • /
    • v.27 no.1
    • /
    • pp.18-25
    • /
    • 2022
  • Hot-firing tests were performed to experimentally confirm the effect of the eigenmode in the fuel-air mixing section on combustion instability by changing mixing section length, inlet mean velocity, equivalence ratio, and swirler geometry. A premixed gas composed of air and ethylene was supplied to the combustion chamber through an mixing section and an axial swirler. As the mixing section length increased, the inlet velocity perturbation decreased, but the combustion instability increased more. It was found that the resonance frequency of the first longitudinal mode in the mixing section shifted to the third longitudinal mode as the length of the mixing section increased. The results implied that the transition of the resonace frquency by changing the length of the mixing section might cause combustion instability.

Hybrid Rocket Instability I (하이브리드 로켓 불안정성 I)

  • Rhee, Sun-Jae;Lee, Jung-Pyo;Moon, Hee-Jang;Sung, Hong-Gye;Kim, Jin-Gon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.81-85
    • /
    • 2012
  • In this paper, the typical combustion instabilities in hybrid rocket were studied. To induce combustion instabilities in the combustor with the diaphragms were mounted, on front and rear of the fuel, and combustion experiments were performed. The calculated theoretical frequencies using Longitudinal Acoustic Mode and Helmholtz Mode are compared with experimental frequencies using FFT analysis. The theoretical calculated results showed good agreements with experimental results are compared.

  • PDF

Aerostatic instability mode analysis of three-tower suspension bridges via strain energy and dynamic characteristics

  • Zhang, Wen-ming;Qian, Kai-rui;Wang, Li;Ge, Yao-jun
    • Wind and Structures
    • /
    • v.29 no.3
    • /
    • pp.163-175
    • /
    • 2019
  • Multispan suspension bridges make a good alternative to single-span ones if the crossed strait or river width exceeds 2-3 km. However, multispan three-tower suspension bridges are found to be very sensitive to the wind load due to the lack of effective longitudinal constraint at their central tower. Moreover, at certain critical wind speed values, the aerostatic instability with sharply deteriorating dynamic characteristics may occur with catastrophic consequences. An attempt of an in-depth study on the aerostatic stability mode and damage mechanism of three-tower suspension bridges is made in this paper based on the assessment of strain energy and dynamic characteristics of three particular three-tower suspension bridges in China under different wind speeds and their further integration into the aerostatic stability analysis. The results obtained on the three bridges under study strongly suggest that their aerostatic instability mode is controlled by the coupled action of the anti-symmetric torsion and vertical bending of the two main-spans' deck, together with the longitudinal bending of the towers, which can be regarded as the first-order torsion vibration mode coupled with the first-order vertical bending vibration mode. The growth rates of the torsional and vertical bending strain energy of the deck after the aerostatic instability are higher than those of the lateral bending. The bending and torsion frequencies decrease rapidly when the wind speed approaches the critical value, while the frequencies of the anti-symmetric vibration modes drop more sharply than those of the symmetric ones. The obtained dependences between the critical wind speed, strain energy, and dynamic characteristics of the bridge components under the aerostatic instability modes are considered instrumental in strength and integrity calculation of three-tower suspension bridges.