• Title/Summary/Keyword: longitudinal displacement

Search Result 381, Processing Time 0.027 seconds

Longitudinal Force Analysis of CWR on High Speed Rail Bridges (고속철도 교량상의 장대레일 축력 해석)

  • 이지하;양신추;이종득
    • Proceedings of the KSR Conference
    • /
    • 1998.05a
    • /
    • pp.556-563
    • /
    • 1998
  • Railway bridges have a significant effect on the stress and displacement of continuous welded rail(CWR). Longitudinal compression force at high temperature, combined breaking or acceleration forces can introduce track buckling. On the other hand, longitudinal tensile forces, associated with low temperatures, in combination with breaking forces may break rail. Therefore, it is very important to work out thorough counter measures for those problems, specially in high speed rail which high safety is required. The exact evaluation of longitudinal force of rail has the key to the solution. The main aim of the present paper is to examine whether the longitudinal force of CWR's on Kyung-Bu-HSR satisfy the criteria to be fulfilled in the design of railway bridge. The analyses are carried out by using "CWRAP" program which was developed by our research group. The ballast resistance and breaking force effects on the longitudinal force of CWR are investigated.

  • PDF

Prediction of Fault Zone ahead of Tunnel Face Using Longitudinal Displacement Measured on Tunnel Face (터널 굴진면 수평변위를 이용한 굴진면 전방의 단층대 예측)

  • Song, Gyu-Jin;Yun, Hyun-Seok;Seo, Yong-Seok
    • The Journal of Engineering Geology
    • /
    • v.26 no.2
    • /
    • pp.187-196
    • /
    • 2016
  • We conducted three-dimensional finite element analysis to predict the presence of upcoming fault zones during tunneling. The analysis considered longitudinal displacements measured at tunnel face, and used 28 numerical models with various fault attitudes. The x-MR (moving range) control chart was used to analyze quantitatively the effects of faults distributed ahead of the tunnel face, given the occurrence of a longitudinal displacement. The numerical models with fault were classified as fault gouge, fault breccia, and fault damage zones. The width of fault cores was set to 1 m (fault gouge 0.5 m and fault breccia 0.5 m) and the width of fault damage zones was set to 2 m. The results, suggest that fault centers could be predicted at 2~26 m ahead of the tunnel face and that faults could be predicted earliest in the 45° dip model. In addition, faults could be predicted earliest when the angle between the direction of tunnel advance and the strike of the fault was smallest.

Measurement of Tunnel Arch Settlements Ahead of and Behind the Tunnel Face Using a Horizontal Inclinometer and Settlement Pins (수평경사계와 천단침하계에 의한 터널막장 전후방의 천단침하 계측)

  • Kim, Cheehwan
    • Tunnel and Underground Space
    • /
    • v.23 no.2
    • /
    • pp.120-129
    • /
    • 2013
  • It is important to measure the displacement behind and ahead of a tunnel face during construction for evaluating mechanical stability by comparing it to a displacement criteria set by tunnel designers. The 30 m long horizontal inclinometer was installed frontward from the tunnel face and the displacement occurred ahead of a tunnel face during excavation was measured by using it. Tunnel arch settlements behind tunnel face were surveyed using a settlement pins on the arch. So total settlement and longitudinal displacement curve were obtained combining settlement measured by both the horizontal inclinometer ahead of tunnel face and the settlement pins behind the tunnel face.

A Numerical Study on Spatial Behavior of Linear Absorbing Solute in Heterogeneous Porous Media (비균질 다공성 매질에서 선형 흡착 용질의 공간적 거동에 대한 수치적 연구)

  • Jeong, Woo Chang;Lee, Chi Hun;Song, Jai Woo
    • Journal of the Korean GEO-environmental Society
    • /
    • v.4 no.3
    • /
    • pp.79-88
    • /
    • 2003
  • This paper presents a numerical study of the spatial behavior of a linear absorbing solute in a heterogeneous porous medium. The spatially correlated log-normal hydraulic conductivity field is generated in a given two-dimensional domain by using the geostatistical method (Turning Bands algorithm). The velocity vector field is calculated by applying the two-dimensional saturated groundwater flow equation to the Galerkin finite element method. The simulation of solute transport is carried out by using the random walk particle tracking model with CD(constant displacement) scheme in which the time interval is automatically adjusted. In this study, the spatial behavior of a solute is analyzed by the longitudinal center-of-mass displacement, longitudinal spatial spread moment and longitudinal plume skewness.

  • PDF

Safety Evaluation on Interaction between Track and Bridge in Continuous Welded Railway Bridge Considering Seismic Load (지진하중을 고려한 장대레일교량의 궤도-교량 상호작용에 대한 안전성 평가)

  • Shim, Yoon-Bo;Kim, Yun-Tae;Kim, Sang-Chel
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.2
    • /
    • pp.40-48
    • /
    • 2016
  • To observe the rail-slab interaction in continuous welded railway(CWR) bridge when earthquake occurs, additional axial rail stresses and relative longitudinal displacements between rail and bridge deck were calculated with input of various load combinations and 3 different types of seismic loads to an analytical model. As results of analysis, it can be found that standard response spectrum proposed by Korea Rail(KR) network authority for earthquake design showed less additional axial rail stresses than allowable levels, but greater relative longitudinal displacement between rail and bridge deck, which means that adjustment of relative longitudinal displacement within a standard level is much more difficult than axial train stress. Additionally, if a large-scaled earthquake as occurred at Kobe, Japan comes up, then both of additional axial rail stress and relative displacement in rail-bridge deck may exceed allowable levels, which indicates to make proper design guides against sudden earthquake occurrence.

Effects of the Longitudinal Inertia Force on Timoshenko Beam Vibration (Timoshenko 보의 진동에 미치는 축방향관성력의 영향에 관하여)

  • ;Lee, Nack Joo
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.2 no.3
    • /
    • pp.62-68
    • /
    • 1978
  • The influences of the large amplitude free vibrations of simply supported Timoshenko beams with ends restrained to remain a fixed distance apart and with no axial restraints, which cause a longitudinal elastic force and a longitudinal inertia force, respectively, are investigated. The equations of motion derived by an appropriate linearizarion of the nonlinear strain- displacement relation have nonlinear terms arising from large curvature, longitudinal elastic force and longitudinal inertia force. The fourth order nonlinear partial differential equations for the deflection, can be reduced to the nonlinear ordinary differential equations by means of Galerkin procedure and a modal expansion. The general response and frequensy-amplitude relations are derived by the perturbation method of strained parameters. Comparison with previously published results is made.

Seismic Performance of Circular RC Bridge Columns with Longitudinal Steel Connection Details (축방향철근 연결상세에 따른 철근콘크리트 원형교각의 내진성능)

  • Lee Jae-Hoon;Son Hyeok-Soo;Ko Seong-Hyun
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.2 s.80
    • /
    • pp.249-260
    • /
    • 2004
  • The longitudinal steel connection of reinforced concrete bridge column is sometimes practically unavoidable, however the current Korean bridge design specifications have no special provisions about lap-splices of longitudinal steel. This paper reports experimental results of a research program investigating the seismic performance of circular RC bridge columns with respect to longitudinal steel connection detailing. Twenty-one circular column specimens were tested under quasi-static test. The columns with the entire longitudinal steel lap-spliced within plastic hinge region show relatively sudden strength degradation and low ductility than the columns with continuous longitudinal steel and the columns with half of longitudinal steel lap-spliced. However, the seismic performance of the column with mechanically connected longitudinal steel is similar to that of the column with continuous longitudinal steel. The final objectives of this study are to suggest appropriate longitudinal reinforcement connection details for the limited ductility design concept and to provide quantitative reference data and tendency for performance or damage assessment based on the performance levels such as cracking, yielding, collapse, etc. Ultimate displacement/drift ratio, displacement ductility, response modification factor, equivalent viscous damping ratio, residual deformation index, and effective stiffness are investigated and discussed in this paper.

Behavior of a tunnel face reinforced with longitudinal pipes - laboratory investigation (실내실험에 의한 수평보강재로 보강된 터널막장의 거동)

  • Yoo, Chung-Sik;Yang, Ki-Ho
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.4 no.2
    • /
    • pp.91-100
    • /
    • 2002
  • This paper presents the results of laboratory investigation on the deformation behavior of tunnel face reinforced with longitudinal pipes. A series of reduced-scale model tests was carried out to investigate the effect of reinforcement layout on the tunnel face axial displacement as well as the surface settlement. Among other things, the results of the model tests indicate that the axial displacement of tunnel face as well as the ground surface settlement can significantly be reduced by pre-reinforcing the tunnel face with longitudinal pipes, suggesting that the pre-reinforcing technique may effectively be used as a positive ground control method in the urban environments. Also illustrated is that the reinforcing effect is significantly influenced by the reinforcement layout. The implications of the findings from this study are discussed in a great detail.

  • PDF

Seismic Performance and Flexural Over-strength of Circular RC Column (원형 RC 기둥의 내진성능과 휨 초과강도)

  • Ko, Seong-Hyun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.5
    • /
    • pp.49-58
    • /
    • 2013
  • Eight small scale circular reinforced concrete columns were tested under cyclic lateral load with constant axial load. Test specimens were designed with 4.5 aspect ratio. The selected test variables are longitudinal steel ratio, transverse steel ratio, yielding strength of longitudinal steel and axial load ratio. The test results of columns with different longitudinal steel ratio, transverse steel ratio and axial load ratio showed different seismic performance such as equivalent damping ratio, residual displacement and effective stiffness. It was found that the column with low strength of longitudinal steel showed significantly reduced seismic performance, especially for equivalent damping ratio and residual displacement. The regulation of flexural over-strength is adopted by Korea Bridge Design Specifications (Limited state design, 2012). The test results are compared with nominal strength, result of nonlinear moment-curvature analysis and the design specifications such as AASHTO LRFD and Korea Bridge Design Specifications (Limited state design).

An Experimental Study for Longitudinal Resistance of Ballast Track on Bridge (교량 상 자갈궤도의 종저항력 측정을 위한 실험 연구)

  • Min, Kyung-Hwan;Yun, Kyung-Min
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.5
    • /
    • pp.173-178
    • /
    • 2016
  • When a ballast track of a high-speed train is constructed on a bridge, the displacement of the bridge decks can occur because they are not fixed to the rails. Moreover, relative displacements occur between the bridge and rails caused by temperature changes and external loads. The current longitudinal resistance criteria (UIC Code 774-3, KR C-08080) on ballast tracks with continuous welded rails (CWRs) do not take into account the longitudinal movement of the bridge and the frictional force between the ballast and slabs. In addition, the magnitude of the longitudinal resistance, k, is calculated somewhat conservatively and, (therefore?) it acts as an unfavorable element in the design of long span and continuous railway bridges. Thus, in order to replicate the actual behavior more effectively, the longitudinal resistance of CWRs should take into account the additional rigidity between the slab and track. In this study, the longitudinal resistances of the ballasted track on the bridge were analyzed by carrying out an experimental study with a test setup designed to simulate the deck and bed track. In the test results, the maximum longitudinal resistances of the tests were similar to the resistances of the current codes, however, the measured longitudinal stiffness designed to limit the displacement of the tests were much smaller in comparison with the longitudinal stiffness on the codes.