• Title/Summary/Keyword: longitudinal analysis

Search Result 2,519, Processing Time 0.025 seconds

A Variational Model For Longitudinal Brain Tissue Segmentation

  • Tang, Mingjun;Chen, Renwen;You, Zijuan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.11
    • /
    • pp.3479-3492
    • /
    • 2022
  • Longitudinal quantification of brain changes due to development, aging or disease plays an important role in the filed of personalized-medicine applications. However, due to the temporal variability in shape and different imaging equipment and parameters, estimating anatomical changes in longitudinal studies is significantly challenging. In this paper, a longitudinal Magnetic Resonance(MR) brain image segmentation algorithm proposed by combining intensity information and anisotropic smoothness term which contain a spatial smoothness constraint and longitudinal consistent constraint into a variational framework. The minimization of the proposed energy functional is strictly and effectively derived from a fast optimization algorithm. A large number of experimental results show that the proposed method can guarantee segmentation accuracy and longitudinal consistency in both simulated and real longitudinal MR brain images for analysis of anatomical changes over time.

Longitudinal reaction on conductors due to tornado wind load

  • Dingyu Yao;Ashraf El Damatty
    • Wind and Structures
    • /
    • v.38 no.4
    • /
    • pp.325-339
    • /
    • 2024
  • The longitudinal force resulting from tornado loads on transmission line is considered a crucial factor contributing to the failure of transmission line structures during tornado events. Accurate estimation of this longitudinal force poses a challenge for structural designers. Therefore, the objective of this paper is to provide a set of charts that can be easily used to estimate the peak longitudinal forces transferred from the conductors to a tower. The critical wind field and corresponding configuration considered in this paper are previously studied and determined. The charts should account for all the conductor parameters that can affect the value of the longitudinal force. In order to achieve that, a parametric study is first conducted to assess the variation of the longitudinal forces with different conductor parameters, based on the critical tornado configuration. Results of this parametric study are used to develop the charts that can be used to calculate longitudinal forces by adopting a multi-variable line regression. The forces calculated from charts are validated by finite element analysis. An example for the usage of the charts is provided at the end of this paper.

A Study on Stress Wave Propagation by Finite Element Analysis (유한요소법에 의한 2차원 응력파 전파 해석에 관한 연구)

  • 황갑운;조규종
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.12
    • /
    • pp.3369-3376
    • /
    • 1994
  • A finite element program for elastic stress wave propagation is developed in order to investigate the shape of stress field and analysis the magnitude of stress wave intensity at time increment. Accuracy and reliance of the finite element analysis are acquired when the element size is smaller than the product of the stress wave speed and the critical value of increasing time step. In the finite element analysis and theoretical solution, the longitudinal stress wave is propagated to the similar direction of impact load, and the stress wave intensity is expressed in terms of the ratio of propagated area. The direction of shear wave is declined at an angle of 45 degrees compared with longitudinal stress wave and the speed of shear wave is half of the longitudinal stress wave.

Study on midtower longitudinal stiffness of three-tower four-span suspension bridges with steel truss girders

  • Cheng, Jin;Xu, Hang;Xu, Mingsai
    • Structural Engineering and Mechanics
    • /
    • v.73 no.6
    • /
    • pp.641-649
    • /
    • 2020
  • The determination of midtower longitudinal stiffness has become an essential component in the preliminary design of multi-tower suspension bridges. For a specific multi-tower suspension bridge, the midtower longitudinal stiffness must be controlled within a certain range to meet the requirements of sliding resistance coefficient and deflection-to-span ratio. This study presents a numerical method to divide different types of midtower and determine rational range of longitudinal stiffness for rigid midtower. In this method, influence curves of midtower longitudinal stiffness on sliding resistance coefficient and maximum vertical deflection-to-span ratio are first obtained from the finite element analysis. Then, different types of midtower are divided based on the regression analysis of influence curves. Finally, rational range for longitudinal stiffness of rigid midtower is derived. The Oujiang River North Estuary Bridge which is a three-tower four-span suspension bridge with two main spans of 800m under construction in China is selected as the subject of this study. This will be the first three-tower four-span suspension bridge with steel truss girders and concrete midtower in the world. The proposed method provides an effective and feasible tool for engineers to design midtower of multi-tower suspension bridges.

Dynamic Stress Analysis on Impact Load in 2-Dimensional Plate (충격하중이 작용하는 평판의 동적 응력 해석)

  • 황갑운;조규종
    • Computational Structural Engineering
    • /
    • v.8 no.1
    • /
    • pp.137-146
    • /
    • 1995
  • Structural stress under shock or impact load is varied with the lapse of time and the structural stress is called stress wave. Propagating longitudinal stress wave is studied in a 2-dimensional plate. A finite element program for elastic stress wave propagation is developed in order to investigate the shape of stress field at time increment. The longitudinal stress wave is generated by unit step function. According to the finite element analysis results, the longitudinal stress wave propagates to the similar direction of impact load and the front of stress wave propagates with the same speed as analytic solution and the shape of stress field is similar to that of analytic solution. The shear wave is occurred after the longitudinal stress wave and declined at an angle of 45 degrees compared with longitudinal stress wave and the speed of shear wave is about a half of the longitudinal stress wave. The intensity of shear wave is larger than that of longitudinal stress wave.

  • PDF

Analysis of Longitudinal Steel Behaviors of Continuously Reinforced Concrete Pavement at Early Age (연속철근콘크리트(CRCP) 종방향 철근의 초기거동 분석)

  • Nam, Jeong-Hee;Jeon, Sung Il
    • International Journal of Highway Engineering
    • /
    • v.16 no.6
    • /
    • pp.59-67
    • /
    • 2014
  • PURPOSES : The purpose of this study is to analyse the longitudinal steel strain and stress of continuously reinforced concrete pavement(CRCP) with longitudinal and transverse direction at early age using stress dependent strain analysis method. METHODS : To measure the longitudinal steel strain, 9-electrical resistance and self-temperature compensation gauges were installed to CRCP test section (thickness = 250mm, steel ratio = 0.7%) and continuously measured 10min. intervals during 30days. In order to properly analyze the steel stress first, temperature compensation process has been conducted. Secondly, measured steel strains were divided into stress dependent strain (elastic strain) and stress independent strain (thermal strain) and then stress dependent strain was applied to stress calculation of longitudinal steels. RESULTS : Steel strains were successfully measured during 30days. To verify the accuracy of temperature compensation process, measured coefficient of thermal expansion(COTE,$11.46{\times}10^{-6}m/m/^{\circ}C$) of longitudinal steel before paving was compared with that of unrestrained steel. Max. steel stress in the transverse direction shows about 266MPa at 23days after placement. CONCLUSIONS : Steel stresses in the longitudinal and transverse direction have been evaluated. In longitudinal direction, steel stress from the crack was rapidly reduced from 183MPa at crack to 18MPa from 600mm apart the crack. From this observation, stress effective length can be identified as within 600mm apart from the crack. In transverse direction, max. stress point was located near the center of pavement width and stress level(266MPa) is about 66% of yield stress of steel.

Analysis of Rail Stress on Diversity of Railway Bridge Sustem (고속철도 교량의 구조 시스템 변화를 고려한 교량상 장대레일의 응력 해석)

  • Kang, Jae-Yoon;Kim, Byung-Suk;Kwark, Jong-Won;Chin, Won-Jong
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.3160-3165
    • /
    • 2011
  • The track and bridge interaction should be considered for the safety check of railway bridge design as the longitudinal forces transmitted to rail and bridge are changed by longitudinal stiffness of bridge system. The longitudinal stiffness of bridge structures is determined by the magnitude of the ballast resistance, the expansion length of superstructure, and longitudinal stiffness of substructure including pier and foundations. In this study, the main factors affect on the longitudinal rail forces are discussed and the computational parametric analysis of rail forces considering rail-bridge interactions. And the required range of stiffness of sub-structures and span length for the assurance of safety of CWR(continuous welded rail) track is suggested.

  • PDF

Dynamic Modeling and Analysis for an Axially moving String (축방향 이송속도를 갖는 현의 모델링 및 진동해석)

  • 신창호;정진태;한창수
    • Journal of KSNVE
    • /
    • v.10 no.5
    • /
    • pp.838-842
    • /
    • 2000
  • The vibration of an axially moving string is studied when the string has geometric non-linearity and translating acceleration. Based upon the von karman strain theory, the equations of motion are derived considering the longitudinal and transverse deflection. The equation for the longitudinal vibration is linear and uncoupled, while the equation for the transverse vibration is non-linear and coupled between the longitudinal and transverse deflections. These equations are discretized by using the Galerkin approximation after they are transformed into the variational equations, i.e. the weak forms so that the admissible and comparison functions can be used for the bases of the longitudinal and transverse deflections respectively. With the discretized nonlinear equations, the time responses are investigated by using the generalized-$\alpha$ method.

  • PDF

Direct calculation of interface warping functions for considering longitudinal discontinuities in beams

  • Lee, Dong-Hwa;Kim, Hyo-Jin;Lee, Phill-Seung
    • Structural Engineering and Mechanics
    • /
    • v.80 no.5
    • /
    • pp.625-643
    • /
    • 2021
  • In this paper, we present a new method to calculate interface warping functions for the analysis of beams with geometric and material discontinuities in the longitudinal direction. The classical Saint Venant torsion theory is extended to a three-dimensional domain by considering the longitudinal direction. The interface warping is calculated by considering both adjacent cross-sections of a given interface. We also propose a finite element procedure to simultaneously calculate the interface warping function and the corresponding twisting center. The calculated interface warping functions are employed in the continuum-mechanics based beam formulation to analyze arbitrary shape cross-section beams with longitudinal discontinuities. Compared to the previous work by Yoon and Lee (2014a), both geometric and material discontinuities are considered with fewer degrees of freedom and higher accuracy in beam finite element analysis. Through various numerical examples, the effectiveness of the proposed interface warping function is demonstrated.

The Prevention of the Longitudinal Deformation on the Built­Up Beam by using Induction Heating

  • Park, J.U.;Lee, C.H.;Chang, K.H.
    • International Journal of Korean Welding Society
    • /
    • v.3 no.2
    • /
    • pp.7-14
    • /
    • 2003
  • During the manufacture of a ship, longitudinal deformation is produced by fillet welding on the Built­Up beam used to improve the longitudinal strength of a ship. This deformation needs a correcting process separate from a manufacture process and decreases productivity and quality. This deformation is caused by welding moment, which is the value multiplied the shrinking force due to welding by the distance from the neutral axis on a cross section of Built­Up beam. This deformation can be offset by generating a moment which is the same magnitude with and is located in an opposite direction to the welding moment on web plate by induction heating. Accordingly, this study clarifies the creation mechanism of the longitudinal deformation on Built­Up beam with FEM analysis and presents the preventative method of this deformation by induction heating basing the mechanism and verifies its validity through analysis and experiments. The induction heating used here is performed by deciding its location and quantity with experiments and simple equations and by applying them to a real structure.

  • PDF