Browse > Article
http://dx.doi.org/10.12989/sem.2021.80.5.625

Direct calculation of interface warping functions for considering longitudinal discontinuities in beams  

Lee, Dong-Hwa (Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology)
Kim, Hyo-Jin (Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology)
Lee, Phill-Seung (Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology)
Publication Information
Structural Engineering and Mechanics / v.80, no.5, 2021 , pp. 625-643 More about this Journal
Abstract
In this paper, we present a new method to calculate interface warping functions for the analysis of beams with geometric and material discontinuities in the longitudinal direction. The classical Saint Venant torsion theory is extended to a three-dimensional domain by considering the longitudinal direction. The interface warping is calculated by considering both adjacent cross-sections of a given interface. We also propose a finite element procedure to simultaneously calculate the interface warping function and the corresponding twisting center. The calculated interface warping functions are employed in the continuum-mechanics based beam formulation to analyze arbitrary shape cross-section beams with longitudinal discontinuities. Compared to the previous work by Yoon and Lee (2014a), both geometric and material discontinuities are considered with fewer degrees of freedom and higher accuracy in beam finite element analysis. Through various numerical examples, the effectiveness of the proposed interface warping function is demonstrated.
Keywords
beams; continuum-mechanics based beam; finite element method; longitudinal discontinuity; torsion; warping;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Wagner, W. and Gruttmann, F. (2001), "Finite element analysis of Saint-Venant torsion problem with exact integration of the elastic-plastic constitutive equations", Comput. Meth. Appl. Mech. Eng., 190, 3831-3848. https://doi.org/10.1016/S0045-7825(00)00302-9.   DOI
2 Wagner, W. and Gruttmann, F. (2002), "A displacement method for the analysis of flexural shear stresses in thin-walled isotropic composite beams", Comput. Struct., 80, 1843-1851. https://doi.org/10.1016/S0045-7949(02)00223-7.   DOI
3 Yoon, K. and Lee, P.S. (2014b), "Nonlinear performance of continuum mechanics based beam elements focusing on large twisting behaviors", Comput. Meth. Appl. Mech. Eng., 281, 106-30. https://doi.org/10.1016/j.cma.2014.07.023.   DOI
4 Yoon, K., Kim, D.N. and Lee, P.S. (2017b), "Nonlinear torsional analysis of 3D composite beams using the extended St. Venant solution", Struct. Eng. Mech., 62, 33-42. https://doi.org/10.12989/sem.2017.62.1.033.   DOI
5 Yoon, K., Lee, P.S. and Kim, D.N. (2017a), "An efficient warping model for elastoplastic torsional analysis of composite beams", Compos. Struct., 178, 37-49. https://doi.org/10.1016/j.compstruct.2017.07.041.   DOI
6 Yoon, K., Lee, Y. and Lee, P.S. (2012), "A continuum mechanics based 3-D beam finite element with warping displacements and its modeling capabilities", Struct. Eng. Mech., 43, 411-437. https://doi.org/10.12989/sem.2012.43.4.411.   DOI
7 Sapountzakis, E.J. and Mokos, V.G. (2003), "Warping shear stresses in nonuniform torsion of composite bars by BEM", Comput. Meth. Appl. Mech. Eng., 192, 4337-4353. https://doi.org/10.1016/S0045-7825(03)00417-1.   DOI
8 Benscoter, S.U. (1954), "A theory of torsion bending for multicell beams", J. Appl. Mech., 21, 25-34. https://doi.org/10.1115/1.4010814.   DOI
9 ANSYS (2018), ANSYS Mechanical APDL Theory Reference, ANSYS Inc.
10 Batoz, J.L. and Dhatt, G. (1990), Modelisation des Structures par Elements Finis: Solides Elastiques, Hermes Sciences.
11 Cardona, A. and Geradin, M. (1988), "A beam finite element non-linear theory with finite rotations", Int. J. Numer. Meth. Eng., 26, 2403-2438. https://doi.org/10.1002/nme.1620261105.   DOI
12 Dvorkin, E.N., Celentano, D., Cuitino, A. and Gioia, G. (1989), "A Vlasov beam element", Comput. Struct., 33, 187-196. https://doi.org/10.1016/0045-7949(89)90140-5.   DOI
13 El Fatmi, R. (2007a), "Non-uniform warping including the effects of torsion and shear forces. Part I: A general beam theory", Int. J. Solid. Struct., 44, 5912-5929. https://doi.org/10.1016/j.ijsolstr.2007.02.006.   DOI
14 Kim, H.J., Lee, D.H., Yoon, K. and Lee, P.S. (2021), "A multi-director continuum beam finite element for efficient analysis of multi-layer strand cables", Comput. Struct., 256, 106621. https://doi.org/10.1016/j.compstruc.2021.106621.   DOI
15 El Fatmi, R. and Ghazouani, N. (2011a), "Higher order composite beam theory built on Saint-Venant's solution. Part-I: Theoretical developments", Compos. Struct., 93, 557-566. https://doi.org/10.1016/j.compstruct.2010.08.024.   DOI
16 Genoese, A., Genoese, A., Bilotta, A. and Garcea, G. (2013), "A mixed beam model with non-uniform warpings derived from the Saint Venant rod", Comput. Struct., 121, 87-98. https://doi.org/10.1016/j.compstruc.2013.03.017.   DOI
17 Yoon, K. and Lee, P.S. (2014a), "Modeling the warping displacements for discontinuously varying arbitrary cross-section beams", Comput. Struct., 131, 56-69. https://doi.org/10.1016/j.compstruc.2013.10.013.   DOI
18 Yoon, K., Lee, P.S. and Kim, D.N. (2015), "Geometrically nonlinear finite element analysis of functionally graded 3D beams considering warping effects", Compos. Struct., 132, 1231-1247. https://doi.org/10.1016/j.compstruct.2015.07.024.   DOI
19 Bathe, K.J. (1996), Finite Element Procedures, Prentice Hall, New York.
20 Iesan, D. (2008), Classical and Generalized Models of Elastic Rods, Chapman and Hall/CRC, New York.
21 Ibrahimbegovic, A. (1997), "On the choice of finite rotation parameters", Comput. Meth. Appl. Mech. Eng., 149, 49-71. https://doi.org/10.1016/S0045-7825(97)00059-5.   DOI
22 Gruttmann, F., Sauer, R. and Wagner, W. (1999), "Shear stresses in prismatic beams with arbitrary cross-sections", Int. J. Numer. Meth. Eng., 45, 865-889. https://doi.org/10.1002/(SICI)1097-0207(19990710)45:7<865::AID-NME609>3.0.CO;2-3.   DOI
23 Hughes, T.J.R. (2000), The Finite Element Method: Linear Static and Dynamic Finite Element Analysis, Dover Publications.
24 Ibrahimbegovic, A. (1995), "On finite element implementation of geometrically nonlinear Reissner's beam theory: three-dimensional curved beam elements", Comput. Meth. Appl. Mech. Eng., 122, 11-26. https://doi.org/10.1016/0045-7825(95)00724-F.   DOI
25 Kim, H.J., Yoon, K. and Lee, P.S. (2020), "Continuum mechanics based beam elements for linear and nonlinear analyses of multilayered composite beams with interlayer slips", Compos. Struct., 235, 111740. https://doi.org/10.1016/j.compstruct.2019.111740.   DOI
26 Pacoste, C. and Eriksson, A. (1977), "Beam elements in instability problems", Comput. Meth. Appl. Mech. Eng., 144, 163-197. https://doi.org/10.1016/S0045-7825(96)01165-6.   DOI
27 Battini, J.M. and Pacoste, C. (2002), "Co-rotational beam elements with warping effects in instability problems", Comput. Meth. Appl. Mech. Eng., 191, 1755-1789. https://doi.org/10.1016/S0045-7825(01)00352-8.   DOI
28 Genoese, A., Genoese, A., Bilotta, A. and Garcea, G. (2014), "A geometrically exact beam model with non-uniform warping coherently derived from the Saint Venant rod", Eng. Struct., 68, 33-46. https://doi.org/10.1016/j.engstruct.2014.02.024.   DOI
29 Pi, Y.L., Bradford, M.A. and Uy, B. (2005), "Nonlinear analysis of members curved in space with warping and Wagner effects", Int. J. Solid. Struct., 42, 3147-3169. https://doi.org/10.1016/j.ijsolstr.2004.10.012.   DOI
30 Barretta, R., Luciano, R. and Willis, J.R. (2015), "On torsion of random composite beams", Compos. Struct., 132, 915-922. https://doi.org/10.1016/j.compstruct.2015.06.069.   DOI
31 Carrera, E., Giunta, G., Nali, P. and Petrolo, M. (2010), "Refined beam elements with arbitrary cross-section geometries", Comput. Struct., 88, 283-293. https://doi.org/10.1016/j.compstruc.2009.11.002.   DOI
32 El Fatmi, R. (2007b), "Non-uniform warping including the effects of torsion and shear forces. Part II: Analytical and numerical applications", Int. J. Solid. Struct., 44, 5930-5952. https://doi.org/10.1016/j.ijsolstr.2007.02.005.   DOI
33 Ghazouani, N. and El Fatmi, R. (2011b), "Higher order composite beam theory built on Saint-Venant's solution. Part-II: Built-in effects influence on the behavior of end-loaded cantilever beams", Compos. Struct., 93, 567-581. https://doi.org/10.1016/j.compstruct.2010.08.024.   DOI
34 Qureshi, MAM. and Ganga Rao, H. (2014), "Torsional response of closed FRP composite sections", Compos. B. Eng., 61, 254-266. https://doi.org/10.1016/j.compositesb.2013.12.065   DOI
35 Gjelsvik, A. (1981), The Theory of Thin Walled Bars, Wiley, New York.
36 Lee, P.S. and McClure, G. (2006), "A general three-dimensional L-section beam finite element for elastoplastic large deformation analysis", Comput. Struct., 84, 215-229. https://doi.org/10.1016/j.compstruc.2005.09.013.   DOI
37 Mancusi, G. and Feo, L. (2013), "Non-linear pre-buckling behavior of shear deformable thin-walled composite beams with open cross-section", Compos. B. Eng., 47, 379-390. https://doi.org/10.1016/j.compositesb.2012.11.003.   DOI
38 GonC alves, R., Ritto-Correa, M. and Camotim, D. (2010), "A large displacement and finite rotation thin-walled beam formulation including cross-section deformation", Comput. Meth. Appl. Mech. Eng., 199, 1627-1643. https://doi.org/10.1016/j.cma.2010.01.006.   DOI
39 Petrov, E. and Geradin, M. (1998a), "Finite element theory for curved and twisted beams based on exact solutions for three-dimensional solids. Part 1: Beam concept and geometrically exact nonlinear formulation", Comput. Meth. Appl. Mech. Eng., 165, 43-92. https://doi.org/10.1016/S0045-7825(98)00061-9.   DOI
40 Petrov, E. and Geradin, M. (1998b), "Finite element theory for curved and twisted beams based on exact solutions for three-dimensional solids. Part 2: Anisotropic and advanced beam models", Comput. Meth. Appl. Mech. Eng., 165, 93-127. https://doi.org/10.1016/S0045-7825(98)00060-7.   DOI
41 Timoshenko, S.P. and Goodier, J.N. (1970), Theory of Elasticity, McGraw Hill.
42 Vlasov, V.Z. (1961), Thin-walled Elastic Beams, Israel Program for Scientific Translations, Jerusalem.
43 Sapountzakis, E.J. and Mokos, V.G. (2004), "Nonuniform torsion of composite bars of variable thickness by BEM", Int. J. Solid. Struct., 41, 1753-1771. https://doi.org/10.1016/j.ijsolstr.2003.11.025.   DOI
44 Alsafadie, R., Hjiaj, M. and Battini, J.M. (2011), "Three-dimensional formulation of a mixed corotational thin-walled beam element incorporating shear and warping deformation", Thin Wall. Struct., 49, 523-533. https://doi.org/10.1016/j.tws.2010.12.002.   DOI