• Title/Summary/Keyword: long-term simulation

Search Result 753, Processing Time 0.034 seconds

Finite element analysis of long-term changes of the breast after augmentation mammoplasty: Implications for implant design

  • Myung, Yujin;Lee, Jong-Gu;Cho, Maenghyo;Heo, Chan Yeong
    • Archives of Plastic Surgery
    • /
    • v.46 no.4
    • /
    • pp.386-389
    • /
    • 2019
  • The development of breast implant technology continues to evolve over time, but changes in breast shape after implantation have not been fully elucidated. Thus, we performed computerized finite element analysis in order to better understand the trajectory of changes and stress variation after breast implantation. The finite element analysis of changes in breast shape involved two components: a static analysis of the position where the implant is inserted, and a dynamic analysis of the downward pressure applied in the direction of gravity during physical activity. Through this finite element analysis, in terms of extrinsic changes, it was found that the dimensions of the breast implant and the position of the top-point did not directly correspond to the trajectory of changes in the breast after implantation. In addition, in terms of internal changes, static and dynamic analysis showed that implants with a lower top-point led to an increased amount of stress applied to the lower thorax. The maximum stress values were 1.6 to 2 times larger in the dynamic analysis than in the static analysis. This finding has important implications for plastic surgeons who are concerned with long-term changes or side effects, such as bottoming-out, after anatomic implant placement.

RSA - QoS: A Resource Loss Aware Scheduling Algorithm for Enhancing the Quality of Service in Mobile Networks

  • Ramkumar, Krishnamoorthy;Newton, Pitchai Calduwel
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.12
    • /
    • pp.5917-5935
    • /
    • 2018
  • Adaptive Multi-Rate Codec is one of the codecs which is used for making voice calls. It helps to connect people who are scattered in various geographical areas. It adjusts its bit-rate according to the user's channel conditions. It plays a vital role in providing an improved speech quality of voice connection in Long Term Evolution (LTE). There are some constraints which need to be addressed in providing this service profitably. Quality of Service (QoS) is the dominant mechanism which determines the quality of the speech in communication. On several occasions, number of users are trying to access the same channel simultaneously by standing in a particular region for a longer period of time. It refers to Multi-user channel sharing problem which leads to resource loss very often. The main aim of this paper is to develop a novel RSA - QoS scheduling algorithm for reducing the Resource Loss Ratio. Eventually, it increases the throughput.The simulation result shows that the RSA - QoS increases the number of users for accessing the resources better than the existing algorithms in terms of resource loss and throughput. Ultimately, it enhances the QoS in Mobile Networks.

Assessment of streamflow variation considering long-term land-use change in a watershed

  • Noh, Joonwoo;Kim, Yeonsu;Yu, Wansik;Yu, Jisoo
    • Korean Journal of Agricultural Science
    • /
    • v.48 no.3
    • /
    • pp.629-642
    • /
    • 2021
  • Land-use change has an important role in the hydrologic characteristics of watersheds because it alters various hydrologic components such as interception, infiltration, and evapotranspiration. For example, rapid urbanization in a watershed reduces infiltration rates and increases peak flow which lead to changes in the hydrologic responses. In this study, a physical hydrologic model the soil and water assessment tool (SWAT) was used to assess long-term continuous daily streamflow corresponding to land-use changes that occurred in the Naesungchun river watershed. For a 30-year model simulation, 3 different land-use maps of the 1990s, 2000s, and 2010s were used to identify the impacts of the land-use changes. Using SWAT-CUP (calibration and uncertainty program), an automated parameter calibration tool, 23 parameters were selected, optimized and compared with the daily streamflow data observed at the upstream, midstream and downstream locations of the watershed. The statistical indexes used for the model calibration and validation show that the model performance is improved at the downstream location of the Naesungchun river. The simulated streamflow in the mainstream considering land-use change increases up to -2 - 30 cm compared with the results simulated with the single land-use map. However, the difference was not significant in the tributaries with or without the impact of land-use change.

A data fusion method for bridge displacement reconstruction based on LSTM networks

  • Duan, Da-You;Wang, Zuo-Cai;Sun, Xiao-Tong;Xin, Yu
    • Smart Structures and Systems
    • /
    • v.29 no.4
    • /
    • pp.599-616
    • /
    • 2022
  • Bridge displacement contains vital information for bridge condition and performance. Due to the limits of direct displacement measurement methods, the indirect displacement reconstruction methods based on the strain or acceleration data are also developed in engineering applications. There are still some deficiencies of the displacement reconstruction methods based on strain or acceleration in practice. This paper proposed a novel method based on long short-term memory (LSTM) networks to reconstruct the bridge dynamic displacements with the strain and acceleration data source. The LSTM networks with three hidden layers are utilized to map the relationships between the measured responses and the bridge displacement. To achieve the data fusion, the input strain and acceleration data need to be preprocessed by normalization and then the corresponding dynamic displacement responses can be reconstructed by the LSTM networks. In the numerical simulation, the errors of the displacement reconstruction are below 9% for different load cases, and the proposed method is robust when the input strain and acceleration data contains additive noise. The hyper-parameter effect is analyzed and the displacement reconstruction accuracies of different machine learning methods are compared. For experimental verification, the errors are below 6% for the simply supported beam and continuous beam cases. Both the numerical and experimental results indicate that the proposed data fusion method can accurately reconstruct the displacement.

Numerical analysis of the venturi flowmeter in the liquid lead-bismuth eutectic circuit after long-term operation

  • Zhichao Zhang;Rafael Macian-Juan;Xiang Wang
    • Nuclear Engineering and Technology
    • /
    • v.56 no.3
    • /
    • pp.1081-1090
    • /
    • 2024
  • The liquid Lead-bismuth eutectic is used as the coolant for Gen-IV reactor concepts. However, due to its strong corrosive and high operating temperature, it is difficult to accurately measure the flow rate in long-term operating conditions. Venturi flowmeter is a simple structured flowmeter, which plays a very important role in the flow measurement of high-temperature liquid metals, especially since the existing flowmeters are difficult to be competent. It has the advantages of easy maintenance and stable operation. Therefore, it is necessary to study the operating conditions of the venturi flowmeter under high-temperature conditions. This work performs a series of simulations of the fluid-solid interaction between the flow liquid metal and venturi flowmeter with COMSOL software, including the dimensional sensitivity analysis of the venturi flowmeter to explore the most suitable structure and parameters for liquid heavy metal, the sensitivity analysis of the geometric parameters of the venturi tube on the varying conditions. It shows that when the contraction angle of the venturi flowmeter is 33°, the diffusion angle is 13°, the diameter of the throat is 8 mm, and the temperature of the lead-bismuth eutectic is 733.15 K, it is most suitable for the measurement in the lead-bismuth circuit.

The Multisector Model of the Korean Economy: Structure and Coefficients (한국경제(韓國經濟)의 다부문모형(多部門模型) : 모형구조(模型構造)와 추정결과(推定結果))

  • Park, Jun-kyung;Kim, Jung-ho
    • KDI Journal of Economic Policy
    • /
    • v.12 no.4
    • /
    • pp.3-20
    • /
    • 1990
  • The multisector model is designed to analyze and forecast structural change in industrial output, employment, capital and relative price as well as macroeconomic change in aggregate income, interest rate, etc. This model has 25 industrial sectors, containing about 1,300 equations. Therefore, this model is characterized by detailed structural disaggregation at the sectoral level. Individual industries are based on many of the economic relationships in the model. This is what distinguishes a multisector model from a macroeconomic model. Each industry is a behavioral agent in the model for industrial investment, employment, prices, wages, and intermediate demand. The strength of the model lies in the simulating the interactions between different industries. The result of its simulation will be introduced in the next paper. In this paper, we only introduce the structure of the multisector model and the coefficients of the equations. The multisector model is a dynamic model-that is, it solves year by year into the future using its own solutions for earlier years. The development of a dynamic, year-by-year solution allows us to combine the change in structure with a consideration of the dynamic adjustment required. These dynamics have obvious advantages in the use of the multisector model for industrial planning. The multisector model is a medium-term and long-term model. Whereas a short-term model can taken the labor supply and capital stock as given, a long-term model must acknowledge that these are determined endogenously. Changes in the medium-term can be analyzed in the context of long-term structural changes. The structure of this model can be summarized as follow. The difference in domestic and world prices affects industrial structure and the pattern of international trade; domestic output and factor price affect factor demand; factor demand and factor price affect industrial income; industrial income and relative price affect industrial consumption. Technical progress, as measured in terms of total factor productivity and relative price affect input-output coefficients; input-output coefficients and relative price determine the industrial input cost; input cost and import price determine domestic price. The differences in productivity and wage growth among different industries affect the relative price.

  • PDF

A Study on the Strategy for Optimizing Investment Portfolios (최적 투자 포트폴리오 구성전략에 관한 연구)

  • Gu, Seung-Hwan;Jang, Seong-Yong
    • IE interfaces
    • /
    • v.23 no.4
    • /
    • pp.300-310
    • /
    • 2010
  • This paper is about an optimal investment portfolio strategy. Financial data of stocks, bonds, and savings from January 2. 2001 through October 30. 2009 were utilized in order to suggest the optimal portfolio strategies. Fundamental analysis and technical analysis were used in stocks-related strategy, whereas passive investment strategy and active investment strategy were used in bond-related strategy. The score is assigned to each stock index according to the suggested strategies and set trading rules are based on the scores. The simulation has been executed about each 29,400-portfolios and we figured out with the simulation result that 26.75% of 7,864 portfolios are more profitable than average stock market profit (22.6%, Annualized). The outcome of this research is summarized in two parts. First, it's the rebalancing strategy of portfolio. The result shows that value-oriented investment(long-term investment) strategy yields much higher than short-term investment strategies of stocks or active investment of bonds. Second, it's about the rebalancing cycle forming the portfolios. The result shows that the rate of return for the portfolio is the best when rebalancing cycle is 12 or 18 months.

Nonlinear Combustion Instability Analysis of Solid Rocket Motor Based on Experimental Data

  • Wei, Shaojuan;Liu, Peijin;Jin, Bingning
    • International Journal of Aerospace System Engineering
    • /
    • v.2 no.2
    • /
    • pp.58-61
    • /
    • 2015
  • Combustion instability in solid rocket motors is a long-term open problem since the first rockets were used. Based on the numerous previous studies, it is known that the limit cycle amplitude is one of the key characteristics of the nonlinear combustion instability in solid rocket motors. Flandro's extended energy balance corollary, aims to predict the limit cycle amplitude of complex, nonlinear pressure oscillations for rockets or air-breathing engines, and leads to a precise assessment of nonlinear combustion instability in solid rocket motors. However, based on the comparison with experimental data, it is revealed that the Flandro's method cannot accurately describe such a complex oscillatory pressure. Thus in this work we make modifications of the nonlinear term in the nonlinear wave equations which represents the interaction of different modes. Through this modified method, a numerical simulation of the cylindrical solid rocket has been carried out, and the simulated result consists well with the experimental data. It means that the added coefficient makes the nonlinear wave growth equations describe the experimental data better.

A Study on GIS Information System for Shipbuilding Yard Block Logistics Simulation (조선소 야드 블록 물류 시뮬레이션을 위한 GIS 정보 체계 연구)

  • Kim, Sanghun;Lee, Yonggil;Woo, Jonghun;Lim, Hyunkyu
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.55 no.2
    • /
    • pp.116-123
    • /
    • 2018
  • These days, geographic information system has released in everyday life and industries. However, the shipyard only uses it to manage the layout of the yard. In this study, we apply the Geographic Information System to shipbuilding block logistics simulation to analyse the behavior of bogies and forklifts carrying blocks and materials in the shipyard. The shipyard manages daily block logistics plans at the execution planning stage. However, since it is a daily plan, it is difficult to respond to an unexpected situation immediately, and application to judge a certain value or higher value is insufficient. Therefore, a simulation model was created using the shape and attribute information inherent in the geographic information system to verify and improve the block logistics of the mid-and long-term yards. Through this simulation model, we will analyse loads on the workplace, stockyard, and road, and contribute to overall logistics improvement from the point of view of resource planning. In addition, the results of the simulation are reflected in the planning, to help support various decisions.

Hourly load forecasting (시간별 전력부하 예측)

  • Kim, Moon-Duk;Lee, Yoon-Sub
    • Proceedings of the KIEE Conference
    • /
    • 1992.07a
    • /
    • pp.495-497
    • /
    • 1992
  • Hourly load forecasting has become indispensable for practical simulation of electric power system as the system become larger and more complicated. To forecast the future hourly load the cyclic behavior of electric load which follows seasonal weather, day or week and office hours is to be analyzed so that the trend of the recent behavioral change can be extrapolated for the short term. For the long term, on the other hand, the changes in the infra-structure of each electricity consumer groups should be assessed. In this paper the concept and process of hourly load forecasting for hourly load is introduced.

  • PDF