• 제목/요약/키워드: long-term memory

검색결과 807건 처리시간 0.025초

딥러닝을 이용한 비트코인 투자전략의 성과 분석 (Performance Analysis of Bitcoin Investment Strategy using Deep Learning)

  • 김선웅
    • 한국융합학회논문지
    • /
    • 제12권4호
    • /
    • pp.249-258
    • /
    • 2021
  • 최근 암호화폐거래소로 투자자들이 몰리면서 비트코인 가격이 급등락하고 있다. 본 연구의 목적은 딥러닝 모형을 이용하여 비트코인의 가격을 예측하고, 투자전략을 통해 비트코인의 수익성이 있는지를 분석하는 것이다. 비선형성과 장기기억 특성을 보이는 비트코인 가격 예측모형으로는 LSTM을 활용하며, 예측 가격을 입력변수로 하는 이동평균선 교차전략의 수익성을 분석하였다. 2013년부터 2021년까지의 LSTM 예측 가격을 이용한 비트코인 이동평균선 교차전략의 투자 성과는 단순 시장가격을 이용한 이동평균선 교차전략과 벤치마크전략 Buy & Hold 보다 각각 5.5%와 46% 이상의 수익률 개선 효과를 보여주었다. 최근 데이터까지 확장하여 분석한 본 연구의 결과는 기존의 연구들과 마찬가지로 암호화폐 시장의 비효율성(inefficiency)을 지지하고 있으며, 비트코인 투자자들에게는 딥러닝 모형을 이용한 투자전략의 실전 활용 가능성을 보여주었다. 향후 연구에서는 다양한 딥러닝 모형들의 성과 비교를 통해 최적의 예측모형을 개발하고 비트코인 투자전략의 수익성을 개선할 필요가 있다.

가속도 예측 기반 새로운 선박 이동 경로 예측 방법 (A New Vessel Path Prediction Method Based on Anticipation of Acceleration of Vessel)

  • 김종희;정찬호;강도근;이창진
    • 전기전자학회논문지
    • /
    • 제24권4호
    • /
    • pp.1176-1179
    • /
    • 2020
  • 선박의 이동 경로를 예측하는 기존의 방법들은 일반적으로 위도와 경도를 직접 예측한다. 하지만, 위도와 경도를 직접 예측할 경우, 예측 모델이 출력 가능한 범위가 상당히 넓어서 예측 오차가 매우 크게 발생할 수 있다. 또한, 순환 신경망 모델 기반의 예측에서는 이전 예측 위치도 다음 위치를 예측하기 위해 사용되기 때문에 오차가 누적되는 현상도 쉽게 발생할 수 있다. 이에 따라, 제안하는 방법에서는 위도와 경도를 직접 예측하지 않고, 선박의 가속도를 예측하여, 향후 속도와 방향을 결정하고, 그 결과로 위도와 경도가 예측되는 방법을 제안한다. 실험 결과에서는 같은 순환 신경망 모델을 사용했을 때, 제안하는 방법이 기존의 직접적으로 위도와 경도를 예측하는 방법에 비해 더 적은 오차를 발생시킴을 보인다.

CAB: Classifying Arrhythmias based on Imbalanced Sensor Data

  • Wang, Yilin;Sun, Le;Subramani, Sudha
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제15권7호
    • /
    • pp.2304-2320
    • /
    • 2021
  • Intelligently detecting anomalies in health sensor data streams (e.g., Electrocardiogram, ECG) can improve the development of E-health industry. The physiological signals of patients are collected through sensors. Timely diagnosis and treatment save medical resources, promote physical health, and reduce complications. However, it is difficult to automatically classify the ECG data, as the features of ECGs are difficult to extract. And the volume of labeled ECG data is limited, which affects the classification performance. In this paper, we propose a Generative Adversarial Network (GAN)-based deep learning framework (called CAB) for heart arrhythmia classification. CAB focuses on improving the detection accuracy based on a small number of labeled samples. It is trained based on the class-imbalance ECG data. Augmenting ECG data by a GAN model eliminates the impact of data scarcity. After data augmentation, CAB classifies the ECG data by using a Bidirectional Long Short Term Memory Recurrent Neural Network (Bi-LSTM). Experiment results show a better performance of CAB compared with state-of-the-art methods. The overall classification accuracy of CAB is 99.71%. The F1-scores of classifying Normal beats (N), Supraventricular ectopic beats (S), Ventricular ectopic beats (V), Fusion beats (F) and Unclassifiable beats (Q) heartbeats are 99.86%, 97.66%, 99.05%, 98.57% and 99.88%, respectively. Unclassifiable beats (Q) heartbeats are 99.86%, 97.66%, 99.05%, 98.57% and 99.88%, respectively.

다변수 LSTM 순환신경망 딥러닝 모형을 이용한 미술품 가격 예측에 관한 실증연구 (An Empirical Study on Prediction of the Art Price using Multivariate Long Short Term Memory Recurrent Neural Network Deep Learning Model)

  • 이지인;송정석
    • 한국콘텐츠학회논문지
    • /
    • 제21권6호
    • /
    • pp.552-560
    • /
    • 2021
  • 새로운 미술품 유통방식의 발달로 미술품의 미적 효용을 넘어 투자재로서 바라보는 시각이 활성화되고 있다. 미술품의 가격은 주식이나 채권 등과 달리 객관적 요소와 주관적 요소들이 모두 반영되어 결정되는 이질적 특성이 있기 때문에 가격 예측에 있어서 그 불확실성이 높다. 본 연구에서는 LSTM(장단기 기억) 순환신경망 딥러닝 모형을 활용하여 낙찰총액 순위 1위부터 10위까지의 한국 작가의 회화 작품을 대상으로 작가의 특성, 작품의 물리적 특성, 판매적 특성 등을 입력으로 하여 경매 낙찰가의 예측을 시도하였다. 연구 결과, 모델에 의한 예측 가격과 실제 낙찰 가격의 차이를 설명하는 RMSE 값이 0.064 수준이었으며 작가별로는 이대원 작가의 예측력이 가장 높았고, 이중섭 작가의 예측력이 가장 낮았다. 투자재로서 미술품 시장이 더욱 활성화되고 경매 낙찰 가격의 예측 수요가 높아지면서 본 연구의 결과가 활용될 수 있을 것이다.

Drug-Drug Interaction Prediction Using Krill Herd Algorithm Based on Deep Learning Method

  • Al-Marghilani, Abdulsamad
    • International Journal of Computer Science & Network Security
    • /
    • 제21권6호
    • /
    • pp.319-328
    • /
    • 2021
  • Parallel administration of numerous drugs increases Drug-Drug Interaction (DDI) because one drug might affect the activity of other drugs. DDI causes negative or positive impacts on therapeutic output. So there is a need to discover DDI to enhance the safety of consuming drugs. Though there are several DDI system exist to predict an interaction but nowadays it becomes impossible to maintain with a large number of biomedical texts which is getting increased rapidly. Mostly the existing DDI system address classification issues, and especially rely on handcrafted features, and some features which are based on particular domain tools. The objective of this paper to predict DDI in a way to avoid adverse effects caused by the consumed drugs, to predict similarities among the drug, Drug pair similarity calculation is performed. The best optimal weight is obtained with the support of KHA. LSTM function with weight obtained from KHA and makes bets prediction of DDI. Our methodology depends on (LSTM-KHA) for the detection of DDI. Similarities among the drugs are measured with the help of drug pair similarity calculation. KHA is used to find the best optimal weight which is used by LSTM to predict DDI. The experimental result was conducted on three kinds of dataset DS1 (CYP), DS2 (NCYP), and DS3 taken from the DrugBank database. To evaluate the performance of proposed work in terms of performance metrics like accuracy, recall, precision, F-measures, AUPR, AUC, and AUROC. Experimental results express that the proposed method outperforms other existing methods for predicting DDI. LSTMKHA produces reasonable performance metrics when compared to the existing DDI prediction model.

PLC 디지털 제어 신호를 통한 LSTM기반의 이산 생산 공정의 실시간 고장 상태 감지 (Real-Time Fault Detection in Discrete Manufacturing Systems Via LSTM Model based on PLC Digital Control Signals)

  • 송용욱;백수정
    • 산업경영시스템학회지
    • /
    • 제44권2호
    • /
    • pp.115-123
    • /
    • 2021
  • A lot of sensor and control signals is generated by an industrial controller and related internet-of-things in discrete manufacturing system. The acquired signals are such records indicating whether several process operations have been correctly conducted or not in the system, therefore they are usually composed of binary numbers. For example, once a certain sensor turns on, the corresponding value is changed from 0 to 1, and it means the process is finished the previous operation and ready to conduct next operation. If an actuator starts to move, the corresponding value is changed from 0 to 1 and it indicates the corresponding operation is been conducting. Because traditional fault detection approaches are generally conducted with analog sensor signals and the signals show stationary during normal operation states, it is not simple to identify whether the manufacturing process works properly via conventional fault detection methods. However, digital control signals collected from a programmable logic controller continuously vary during normal process operation in order to show inherent sequence information which indicates the conducting operation tasks. Therefore, in this research, it is proposed to a recurrent neural network-based fault detection approach for considering sequential patterns in normal states of the manufacturing process. Using the constructed long short-term memory based fault detection, it is possible to predict the next control signals and detect faulty states by compared the predicted and real control signals in real-time. We validated and verified the proposed fault detection methods using digital control signals which are collected from a laser marking process, and the method provide good detection performance only using binary values.

시분할 특징 융합 합성곱 신경망을 이용한 스마트폰 사용자의 행동 검출 (Detection The Behavior of Smartphone Users using Time-division Feature Fusion Convolutional Neural Network)

  • 신현준;곽내정;송특섭
    • 한국정보통신학회논문지
    • /
    • 제24권9호
    • /
    • pp.1224-1230
    • /
    • 2020
  • 스마트폰의 보급 이후 웨어러블 디바이스에 대한 관심이 높아지고 다양화되면서 사용자들의 생활에 밀접하게 연관되고 있으며, 개인화된 서비스를 제공하기 위한 방법으로 사용되고 있다. 본 논문에서는 스마트폰에 내장된 3축 가속도 센서와 3축 자이로 센서의 정보를 합성곱 신경망에 적용하여 사용자의 행동을 검출하는 방법을 제안한다. 인간의 행동은 동작의 크기와 범위에 따라서 동작을 구성하는 신호 데이터의 지속시간을 포함한 시작 시점과 끝나는 시점이 다르다. 이로 인해 합성곱 신경망에 그대로 적용하면 행동 인식 정확도에 대한 성능상의 문제가 있다. 따라서 센서 데이터를 시간의 구간에 따라 분할된 특징을 학습하는 시분할 특징 융합 합성곱 신경망(TDFFCNN: Time-Division Feature Fusion Convolutional Neural Network)을 제안하였다.

딥러닝 알고리즘 기반의 초미세먼지(PM2.5) 예측 성능 비교 분석 (Comparison and analysis of prediction performance of fine particulate matter(PM2.5) based on deep learning algorithm)

  • 김영희;장관종
    • 융합정보논문지
    • /
    • 제11권3호
    • /
    • pp.7-13
    • /
    • 2021
  • 본 연구는 딥러닝(Deep Learning) 알고리즘 GAN 모델을 기반으로 초미세먼지(PM2.5) 인공지능 예측시스템을 개발한다. 실험 데이터는 시계열 축으로 생성된 온도, 습도, 풍속, 기압의 기상변화와 SO2, CO, O3, NO2, PM10와 같은 대기오염물질 농도와 밀접한 관련이 있다. 데이터 특성상, 현재시간 농도가 이전시간 농도에 영향을 받기 때문에 반복지도학습(Recursive Supervised Learning) 예측 모델을 적용하였다. 기존 모델인 CNN, LSTM의 정확도(Accuracy)를 비교분석을 위해 관측값(Observation Value)과 예측값(Prediction Value)간의 차이를 분석하고 시각화했다. 성능분석 결과 제안하는 GAN이 LSTM 대비 평가항목 RMSE, MAPE, IOA에서 각각 15.8%, 10.9%, 5.5%로 향상된 것을 확인하였다.

차량 센서 데이터 조합을 통한 딥러닝 기반 차량 이상탐지 (Deep Learning-Based Vehicle Anomaly Detection by Combining Vehicle Sensor Data)

  • 김송희;김선혜;윤병운
    • 한국산학기술학회논문지
    • /
    • 제22권3호
    • /
    • pp.20-29
    • /
    • 2021
  • 4차산업혁명 시대에는 대량의 데이터를 학습하여 예측과 분류의 정확성을 향상시킬 수 있는 인공지능의 활용이 핵심적이다. 그러나, 기존 이상탐지를 위한 방법은 제한된 데이터를 다루는 전통적인 통계 방법에 의존하고 있어, 정확한 이상탐지가 어렵다. 그러므로, 본 연구는 인공지능 기반 이상탐지 방법을 제시하여 예측 정확도를 높이고, 새로운 데이터 패턴을 정의하는 것을 목적으로 한다. 특히, 자동차의 경우 공회전 기간의 센서 데이터가 이상 탐지에 활용될 수 있다는 관점에서 데이터를 수집하고 분석하였다. 이를 위해, 예측 모델에 입력되는 데이터의 적정 시간 길이를 결정하고, 공회전 기간 데이터와 전체 운행 데이터의 분석 결과를 비교하며, 다양한 센서 데이터 조합에 의한 최적 예측 방법을 도출하였다. 또한, 인공지능 방법으로 선택된 CNN의 예측 정확성을 검증하기 위해 LSTM 결과와 비교하였다. 분석 결과, 공회전 데이터를 이용하고, 공회전 기간보다 1.5배 많은 기간의 데이터를 이용하며 LSTM보다는 CNN을 활용하는 것이 더 좋은 예측결과를 보였다.

오픈소스 기반 지도 서비스를 이용한 딥러닝 실시간 가상 전력수요 예측 가시화 웹 시스템 (Development of Data Visualized Web System for Virtual Power Forecasting based on Open Sources based Location Services using Deep Learning)

  • 이정휘;김동근
    • 한국정보통신학회논문지
    • /
    • 제25권8호
    • /
    • pp.1005-1012
    • /
    • 2021
  • 최근 웹에서 지도(Map)를 이용한 Location based Services 기반의 다양한 위치정보시스템 활용이 점점 확대되고 있으며 에너지 절약을 위한 대안으로 전력 수요 현황을 실시간으로 확인할 수 있는 모니터링 시스템의 필요성이 요구되고 있다. 본 연구에서는 딥러닝과 같은 기계학습을 이용하여 전력 수요 데이터의 특성을 분석하고 예측하는 모듈을 개발하여 지역 단위별 전력 에너지 사용 현황과 예측 추세를 실시간으로 확인할 수 있는 오픈소스 기반 지도 서비스를 이용한 딥러닝 실시간 가상 전력수요예측 웹 시스템을 개발하였다. 특히 제안한 시스템은 LSTM 딥러닝 모델을 이용하여 지역적으로 전력 수요량과 예측 분석이 실시간으로 가능하고 분석된 정보를 가시화하여 제공한다. 향후 제안된 시스템을 통해 지역별 에너지의 수급 및 예측 현황을 확인하고 분석하는데 활용될 수 있을 뿐만 아니라 다른 산업 에너지에도 적용될 수 있을 것이다.