Browse > Article
http://dx.doi.org/10.22937/IJCSNS.2021.21.6.41

Drug-Drug Interaction Prediction Using Krill Herd Algorithm Based on Deep Learning Method  

Al-Marghilani, Abdulsamad (College of Computer Science & Information Technology, Northern Border University)
Publication Information
International Journal of Computer Science & Network Security / v.21, no.6, 2021 , pp. 319-328 More about this Journal
Abstract
Parallel administration of numerous drugs increases Drug-Drug Interaction (DDI) because one drug might affect the activity of other drugs. DDI causes negative or positive impacts on therapeutic output. So there is a need to discover DDI to enhance the safety of consuming drugs. Though there are several DDI system exist to predict an interaction but nowadays it becomes impossible to maintain with a large number of biomedical texts which is getting increased rapidly. Mostly the existing DDI system address classification issues, and especially rely on handcrafted features, and some features which are based on particular domain tools. The objective of this paper to predict DDI in a way to avoid adverse effects caused by the consumed drugs, to predict similarities among the drug, Drug pair similarity calculation is performed. The best optimal weight is obtained with the support of KHA. LSTM function with weight obtained from KHA and makes bets prediction of DDI. Our methodology depends on (LSTM-KHA) for the detection of DDI. Similarities among the drugs are measured with the help of drug pair similarity calculation. KHA is used to find the best optimal weight which is used by LSTM to predict DDI. The experimental result was conducted on three kinds of dataset DS1 (CYP), DS2 (NCYP), and DS3 taken from the DrugBank database. To evaluate the performance of proposed work in terms of performance metrics like accuracy, recall, precision, F-measures, AUPR, AUC, and AUROC. Experimental results express that the proposed method outperforms other existing methods for predicting DDI. LSTMKHA produces reasonable performance metrics when compared to the existing DDI prediction model.
Keywords
Drug-Drug Interaction; Long Short Term Memory; Krill Herd Algorithm; Deep Learning; Machine Learning;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Wang, G.-G., Deb, S., Gao, X.-Z., & Coelho, L. D. S. (2016). A new metaheuristic optimisation algorithm motivated by elephant herding behaviour. International Journal of Bio-Inspired Computation, 8(6), 394-409.   DOI
2 Lipton, Z. C., Berkowitz, J., & Elkan, C. (2015). A critical review of recurrent neural networks for sequence learning. arXiv preprint arXiv:1506.00019.
3 Rohani, N., & Eslahchi, C. (2019). Drug-Drug interaction predicting by neural network Using integrated Similarity. Scientific reports, 9(1), 1-11.   DOI
4 Agrawal, Pandit, & Dubey (2016), Improved Krill Herd Algorithm with Neighborhood Distance Concept for Optimization, International Journal of Intelligent Systems and Applications, , PP.34-50.
5 Zhang, W., Jing, K., Huang, F., Chen, Y., Li, B., Li, J., & Gong, J. (2019). SFLLN: a sparse feature learning ensemble method with linear neighborhood regularization for predicting drug-drug interactions. Information Sciences, 497, 189-201.   DOI
6 Lee, Park & Ahn, (2019), Novel deep learning model for more accurate prediction of drug-drug Interaction effects, BMC Bioinformatics, https://doi.org/10.1186/s12859-019-3013-0.   DOI
7 Gottlieb, A., Stein, G. Y., Oron, Y., Ruppin, E., & Sharan, R. (2012). INDI: a computational framework for inferring drug interactions and their associated recommendations. Molecular systems biology, 8(1).
8 Zhou, D., Miao, L., & He, Y. (2018). Position-aware deep multi-task learning for drug-drug interaction extraction. Artificial intelligence in medicine, 87, 1-8.   DOI
9 Abualigah, L. M., Khader, A. T., Hanandeh, E. S., & Gandomi, A. H. (2017). A novel hybridization strategy for krill herd algorithm applied to clustering techniques. Applied Soft Computing, 60, 423-435.   DOI
10 Sahu, S. K., & Anand, A. (2018). Drug-drug interaction extraction from biomedical texts using long short-term memory network. Journal of biomedical informatics, 86, 15-24.   DOI
11 Abdel-Basset, M., Wang, G.-G., Sangaiah, A. K., & Rushdy, E. (2019). Krill herd algorithm based on cuckoo search for solving engineering optimization problems. Multimedia Tools and Applications, 78(4), 3861-3884.   DOI
12 Shen, Y., Yuan, K., Yang, M., Tang, B., Li, Y., Du, N., & Lei, K. (2019). KMR: knowledge-oriented medicine representation learning for drug-drug interaction and similarity computation. Journal of cheminformatics, 11(1), 22.   DOI
13 Jan, B., Farman, H., Khan, M., Imran, M., Islam, I. U., Ahmad, A., Jeon, G. (2019). Deep learning in big data Analytics: A comparative study. Computers & Electrical Engineering, 75, 275-287.   DOI
14 Wang, G.-G., Deb, S., Gandomi, A. H., & Alavi, A. H. (2016). Opposition-based krill herd algorithm with Cauchy mutation and position clamping. Neurocomputing, 177, 147-157.   DOI
15 Ferdousi,R, Safda,i, R, Omidi, Y. (2017) Computational prediction of drug-drug interactions drugs functional similarities, Journal of Biomedical Informatics,V.70, 54- 64.   DOI
16 Rohani, N., Eslahchi, C., & Katanforoush, A. (2020). ISCMF: Integrated similarity-constrained matrix factorization for drug-drug interaction prediction. Network Modeling Analysis in Health Informatics and Bioinformatics, 9(1), 1-8.   DOI
17 Xu, B., Shi, X., Zhao, Z., & Zheng, W. (2018). Leveraging biomedical resources in bi-lstm for drug-drug interaction extraction. IEEE Access, 6, 33432-33439.   DOI
18 Rezaul Karim, M., Cochez, M., Bosco Jares, J., Uddin, M., Beyan, O., & Decker, S. (2019). Drug-Drug Interaction Prediction Based on Knowledge Graph Embeddings and Convolutional-LSTM Network. arXiv preprint arXiv:1908.01288.
19 Li, L., Sun, L., Xue, Y., Li, S., Huang, X. and Mansour, R.F., 2021. Fuzzy Multilevel Image Thresholding Based on Improved Coyote Optimization Algorithm. IEEE Access, 9, pp.33595-33607.   DOI
20 Lamurias, A., Sousa, D., Clarke, L. A., & Couto, F. M. (2019). BOLSTM: classifying relations via long short-term memory networks along biomedical ontologies. BMC bioinformatics, 20(1), 1-12.   DOI
21 Deng, Y., Xu, X., Qiu, Y., Xia, J., Zhang, W., & Liu, S. (2020). A multimodal deep learning framework for predicting drug-drug interaction events. Bioinformatics.
22 Lamurias, A., & Couto, F. M. (2019). Text mining for bioinformatics using biomedical literature. Encyclopedia of bioinformatics and computational biology, 1, 602-611.   DOI
23 Takeda, T., Hao, M., Cheng, T., Bryant, S. H., & Wang, Y. (2017). Predicting drug-drug interactions through drug structural similarities and interaction networks incorporating pharmacokinetics and pharmacodynamics knowledge. Journal of cheminformatics, 9(1), 16.   DOI
24 Wang, M., Chen, Y., Qian, B., Liu, J., Wang, S., Long, G., & Wang, F. (2017). Predicting Rich Drug-Drug Interactions via Biomedical Knowledge Graphs and Text Jointly Embedding. arXiv preprint arXiv:1712.08875.
25 Guo, Y., Dai, X., Jermsittiparsert, K., & Razmjooy, N. (2020). An optimal configuration for a battery and PEM fuel cell-based hybrid energy system using developed Krill herd optimization algorithm for locomotive application. Energy Reports, 6, 885-894.
26 Wang, G.-G., Gandomi, A. H., Alavi, A. H., & Gong, D. (2019). A comprehensive review of krill herd algorithm: variants, hybrids and applications. Artificial Intelligence Review, 51(1), 119-148.   DOI
27 Yoshida, K., Zhao, P., Zhang, L., Abernethy, D. R., Rekic, D., Reynolds, K. S., . . . Huang, S.-M. (2017). In Vitro-In Vivo Extrapolation of Metabolism-and Transporter-Mediated Drug-Drug Interactions-Overview of Basic Prediction Methods. Journal of pharmaceutical sciences, 106(9), 2209-2213.   DOI
28 Wishart, D. S., Feunang, Y. D., Guo, A. C., Lo, E. J., Marcu, A., Grant, J. R., . . . Sayeeda, Z. (2018). DrugBank 5.0: a major update to the DrugBank database for 2018. Nucleic acids research, 46(D1), D1074-D1082.   DOI
29 Liu, S., Chen, K., Chen, Q., & Tang, B. (2016). Dependency-based convolutional neural network for drug-drug interaction extraction. Paper presented at the 2016 IEEE international conference on bioinformatics and biomedicine (BIBM).
30 Yi, Z., Li, S., Yu, J., Tan, Y., Wu, Q., Yuan, H., & Wang, T. (2017). Drug-drug interaction extraction via recurrent neural network with multiple attention layers. Paper presented at the International Conference on Advanced Data Mining and Applications.
31 Park, C., Park, J., & Park, S. (2020). AGCN: Attention-based Graph Convolutional Networks for Drug-Drug Interaction Extraction. Expert Systems with Applications, 113538.   DOI
32 Zhang, W., Chen, Y., Liu, F., Luo, F., Tian, G., & Li, X. (2017). Predicting potential drug-drug interactions by integrating chemical, biological, phenotypic and network data. BMC bioinformatics, 18(1), 18.   DOI
33 Shtar, Rokach & Shapira (2019), Detecting drug-drug interactions using artificial neural networks and classic graph similarity measures, PLoS ONE 14(8): e0219796. https://doi.org/10.1371/journal.pone.0219796.   DOI
34 Bolaji, A. L. a., Al-Betar, M. A., Awadallah, M. A., Khader, A. T., & Abualigah, L. M. (2016). A comprehensive review: Krill Herd algorithm (KH) and its applications. Applied Soft Computing, 49, 437-446.   DOI
35 Feng, Y., Wang, G.-G., Deb, S., Lu, M., & Zhao, X.-J. (2017). Solving 0-1 knapsack problem by a novel binary monarch butterfly optimization. Neural Computing and Applications, 28(7), 1619-1634.   DOI