• Title/Summary/Keyword: long-term chloride exposure test

Search Result 12, Processing Time 0.025 seconds

Durability Characteristics of RC containing Different Chloride Contents based on Long Term Exposure Test and Accelerated Test (장기폭로시험과 촉진시험에 근거한 염화물 함유량에 따른 철근콘크리트의 내구특성)

  • 권성준;송하원;신수철;변근주
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.10a
    • /
    • pp.759-762
    • /
    • 1999
  • The concrete structures possessing good structural integrity can face durability problems due to deteriorations of concrete structures under various environmental conditions. The durability problems weaken the structural integrity in the long run. Especially, the excessive use of sea sand causes serious reinforcement corrosion and carbonation in concrete structures. An accelerated test is often used to predict deterioration as a qualitative measure, but without long term exposure test results or understanding of the relationship between the accelerated test and the long term exposure test, the accelerated test result alone can not be used effectively as a quantitative measure. In this paper, a methodology is proposed to predict the long term deteriorations, based on the result of the short-term accelerated test, of concrete containing different contents of chloride ions. Then, the correlation between two results on the steel corrosion ratio and the carbonation depth is analyzed for concrete with different chloride contents.

  • PDF

Performance Evaluation of Repair Material and Method for Reinforced Concrete Structure by Long Term Exposure Experiment (장기폭로실험에 의한 철근콘크리트 구조물의 보수재료.공법 성능평가)

  • Kim, Moo-Han;Kim, Gyu-Yong;Cho, Bong-Suk;Kim, Young-Duck;Kim, Young-Sun
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.1
    • /
    • pp.39-46
    • /
    • 2007
  • In this study, for the establishment of the performance evaluation methods and the quality control standards of durability recovery method, the quantitative exposure data by long term exposure test under the coast and normal atmosphere is accumulated and analyzed. Investigating and evaluating the result of exposure test during 30 months of exposure age under the coastal and normal atmosphere environment, carbonation depth and chloride-ion penetration depth very little penetrated than cover depth. It seems reasonable to conclude that main cause of Corrosion of reinforcing bar are chloride-ion and macro cell from the result of corrosion area and corrosion velocity. Therefore, it is considered to be applied as the fundamental data on the performance evaluation and quality control standards of repair material and method through continuous exposure test in the future.

Durability Evaluation of Inorganic-Impregnated Concrete Exposed to Long-Term Chloride Exposure Test (무기계 침투제를 적용한 콘크리트의 장기폭로실험을 통한 염해 내구성 평가)

  • Kwon, Seung-Jun;Park, Sang-Soon;Lho, Byeong-Cheol
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.3
    • /
    • pp.283-290
    • /
    • 2008
  • The repair technique using surface impregnation of reactive compound is so effective for deteriorated concrete structures that many researches are recently focused on these works. Particularly, inorganic impregnant is regarded as ecofriendly material because there is no air-pollution during manufacturing process as well as field coating works. Furthermore, The delamination between old concrete and impregnated surface does not occur, resulting from different material characteristics. In order to evaluate the durability performance of surface-impregnated concrete, durability evaluation through the long-term exposure tests is significant, however, experiments are usually limited to the temporary and qualitative laboratorial scope. In this study, durability characteristics for inorganic and organic/inorganic impregnated concrete specimens are evaluated through longterm chloride exposure test. The specimens with 21MPa and 34MPa strength have been prepared and exposed to chloride attack in the atmospheric, tidal, and submerged conditions. Evaluation for compressive strength, chloride penetration, and electrical potential (half cell potential) for steel corrosion are performed for the specimens exposed for 2 years. From the results, no distinct strength gaining is observed but the resistance to chloride penetration and steel corrosion is evaluated to be improved through surface impregnation. The more improved resistance to chloride attack is measured in the inorganic impregnated concrete and the results from atmospheric condition show more improved resistance to chloride attack than those from submerged and tidal condition.

Performance Evaluation of Repair Methods for RC structures by Accelerating Test in Combined Deterioration Chamber and Long-Term Field Exposure Test (복합열화촉진실험 및 장기현장폭로실험에 의한 RC구조물 보수공법의 보수성능평가)

  • Kwon Young-Jin;Kim Jae-Hwan;Han Byung-Chan;Jang Seung-Yup
    • Journal of the Korean Society for Railway
    • /
    • v.9 no.4 s.35
    • /
    • pp.349-356
    • /
    • 2006
  • At present, the selecting system and analytic estimation criterion on repair materials and methods of the deteriorated RC structures have not yet been set up in domestic. Under these circumstances, deterioration such as shrinkage crack, corrosion of rebar has been often occurred after repair, and this finally results in too frequent repairs. In this study, three types of repair methods were experimentally investigated by the accelerating test in a combined deterioration chamber and long-term field exposure test. Three types of repair methods applied in this study belong to a group of polymer cement mortar, which is commonly used in repair works. According to the results of this study, durability of repair mortar layers and corrosion properties of recovered rebar could be investigated in short period by the accelerating test in a combined deterioration chamber, which can simulate the condition of repeated high-and-low temperature and repeated dry-and-wet environment, spraying chloride solution and emitting $CO_2$ gas. After 36 month long-term filed exposure test in the coastal area, harmful macro-cracks are observed in the polymer cement mortar layer of some repair methods. These crack are considered to result from drying shrinkage of polymer cement mortar. Also, after 36 month exposure, amount of corrosion area and weight loss of rebar are found to be different according to the types of repair methods.

Seawater curing effects on the permeability of concrete containing fly ash

  • Hosseini, Seyed Abbas
    • Advances in concrete construction
    • /
    • v.14 no.3
    • /
    • pp.205-214
    • /
    • 2022
  • Due to seawater's physical and chemical deterioration effects on concrete structures, it is crucial to investigate the durability of these structures in marine environments. In some conditions, concrete structures are exposed to seawater from the first days of construction or because of the lack of potable water, part of the concrete curing stage is done with seawater. In this research, the effects of exposure to seawater after 7 days of curing in standard conditions were evaluated. To improve the durability of concrete, fly ash has been used as a substitute for a part of the cement in the mixing design. For this purpose, 5, 15, and 30% of the mixing design cement were replaced with type F fly ash, and the samples were examined after curing in seawater. The resistance of concrete against chloride ion penetration based on the rapid chloride penetration test (RCPT), water permeability based on the depth of water penetration under pressure, and water absorption test was done. The changes in the compressive strength of concrete in different curing conditions were also investigated. The results show that the curing in seawater has slightly reduced concrete resistance to chloride ion permeation. In the long-term, samples containing FA cured in seawater had up to 10% less resistance to chloride ion penetration. The amount of reduction in chloride ion penetration resistance was more for samples without FA. Whiles, for both curing conditions in the long-term up to 15%, FA improved the chloride ion penetration resistance up to 40%. Curing in seawater slightly increased the penetration depth of water under pressure in samples containing FA, while this increase was up to 12% for samples without FA. In the long-term the compressive strength of samples cured in seawater is not much different from the compressive strength of samples cured in plain water, while at the age of 28 days, due to seawater salts' accelerating effects the difference is more noticeable.

An Evaluation of Corrosion Protective Systems for Reinforcing Steel in Concrete (콘크리트 구조물의 철근 방식성능 실험평가)

  • Hur, Jun;Hong, Gi-Suop;Oh, Sung-Mo;Jang, Ji-Won;Choi, Eung-Kyu;Choi, Oan-Chul
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.10a
    • /
    • pp.275-280
    • /
    • 1997
  • An experimental study to evaluate corrosion protection systems was undertaken with 47 reinforced concrete slab specimens subjected to cyclic wet and dry saltwater exposure. Corrosion measurements included monitoring marcrocell corrosion currents, which are generally accepted in United States practice. Test results indicate that specimens containing 2 kg/$\textrm{m}^3$ of NaCl an exposed to a 10 percent of NaCl show high values of corrosion currents. For the specimens with water repellent membrane currents kept relatively low numerical values, while test specimens with surface corrosion inhibitor hyprotective systems show high values of corrosion currents. No clear indication of the corrosion inhibitor protective systems might be due to the extremely high chloride exposure of the specimens, which has brought the accelerated corrosion. It would be expected that evaluation of the corrosion protective systems need long-term measurement with specimen exposed les chloride but simulating the real condition.

  • PDF

Quantification of Half Cell Potential with Mix Properties in RC Member under Long-Term Chloride Exposure Conditions (장기 염해에 노출된 RC 부재의 배합 특성을 고려한 반 전위의 정량화)

  • Yoon, Yong-Sik;Jeong, Gi-Chan;Kwon, Seung-Jun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.10 no.3
    • /
    • pp.307-313
    • /
    • 2022
  • In this study, the correlation between Half Cell Potential(HCP) and the corrosion influencing factors was analyzed with considering three levels of water-cement ratio, the concentration of chloride solution, and cover depth. As a result of long-term corrosion monitoring, HCP behavior was close to the critical corrosion potential(-350 mV) in all water-cement ratios in the case of 3.5 % and 7.0 % chloride concentration. Regarding the passed charge test in 548 curing days, the passed charge results were improved to 'Moderate' grade. Multiple regression analysis was performed to evaluate the correlation between corrosion influencing factors and HCP, and it was evaluated that the effects of influencing factors to HCP were in the order of chloride concentration, water-cement ratio, and cover depth. In the case of the relationship between HCP and the passed charge, the coefficient of determination showed a high level of 0.9, which yielded a close correlation between the passed charge and HCP.

Impact of aggressive exposure conditions on sustainable durability, strength development and chloride diffusivity of high performance concrete

  • Al-Bahar, Suad;Husain, A.
    • Structural Monitoring and Maintenance
    • /
    • v.2 no.1
    • /
    • pp.35-48
    • /
    • 2015
  • The main objective of this study is to evaluate the long-term performance of various concrete composites in natural marine environment prevailing in the Gulf region. Durability assessment studies of such nature are usually carried out under aggressive environments that constitute seawater, chloride and sulfate laden soils and wind, and groundwater conditions. These studies are very vital for sustainable development of marine and off shore reinforced concrete structures of industrial design such as petroleum installations. First round of testing and evaluation, which is presented in this paper, were performed by standard tests under laboratory conditions. Laboratory results presented in this paper will be corroborated with test outcome of ongoing three years field exposure conditions. The field study will include different parameters of investigation for high performance concrete including corrosion inhibitors, type of reinforcement, natural and industrial pozzolanic additives, water to cement ratio, water type, cover thickness, curing conditions, and concrete coatings. Like the laboratory specimens, samples in the field will be monitored for corrosion induced deterioration signs and for any signs of failureover initial period ofthree years. In this paper, laboratory results pertaining to microsilica (SF), ground granulated blast furnace slag (GGBS), epoxy coated rebars and calcium nitrite corrosion inhibitor are very conclusive. Results affirmed that the supplementary cementing materials such as GGBS and SF significantly impacted and enhanced concrete resistivity to chloride ions penetration and hence decrease the corrosion activities on steel bars protected by such concretes. As for epoxy coated rebars applications under high chloride laden conditions, results showed great concern to integrity of the epoxy coating layer on the bar and its stability. On the other hand corrosion inhibiting admixtures such as calcium nitrite proved to be more effective when used in combination with the pozzolanic additives such as GGBS and microsilica.

Evaluation of Corrosion Thickness Loss of Temporary Steel Members Exposed to A Subway Construction Site (지하철 공사현장 환경하의 가시설 강재의 부식두께감소량 추정)

  • Kim, In Tae;Jeon, Sang Hyuck;Hur, Jung Ok;Cheung, Jin Hwan
    • Journal of Korean Society of Steel Construction
    • /
    • v.21 no.3
    • /
    • pp.301-310
    • /
    • 2009
  • Steel has been widely used as a material in temporary structures. Corrosion attack often reduces the long-term durability of temporary steel members that are not protected from corrosion. In designing temporary steel structures, it is difficult to evaluate their long-term durability, since the thickness loss of steel members is not clear. In this study, laboratory and field exposure corrosion tests were performed on structural steel plate specimens, and the loss of thickness of specimens that were exposed to a subway construction site for 11 months and of specimens that were exposed to environments with controlled humidity and calcium chloride for six months were measured. Finally, a thickness loss equation was formulated based on the environmental conditions and the testing periods.

Electrical Impedance Spectroscopy(EIS) Measurements to Evaluate Corrosion of Steel/Concrete System (교류 임피던스기법을 이용한 철근부식 측정에 관한 실험적 연구)

  • Jung, Si-Young;Kim, Byoung-Kook;Choi, Oan-Chul
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.659-662
    • /
    • 2005
  • Electrochemical impedance spectroscopy (EIS) has been extensively used to try to evaluate the corrosion state of the steel/concrete system. This technique is attractive because, in theory, used in a wide range of frequencies, it can give detailed information about the mechanisms and kinetics of the electrochemical reactions. Impedance measurements were performed using potential control and measuring the corresponding current response. One-year-old southern exposure test. specimens were used in the current study. The effectiveness of corrosion inhibiting additives was evaluated. The corrosion current densities estimated by impedance measurements were confirmed by those determined using linear polarization techniques. The purpose of this study was to evaluate the long-term-performance potential of the corrosion inhibitors in chloride contaminated reinforce concrete.

  • PDF