• 제목/요약/키워드: long short-time memory neural network

검색결과 122건 처리시간 0.019초

Long Short-Term Memory를 활용한 건화물운임지수 예측 (Prediction of Baltic Dry Index by Applications of Long Short-Term Memory)

  • 한민수;유성진
    • 품질경영학회지
    • /
    • 제47권3호
    • /
    • pp.497-508
    • /
    • 2019
  • Purpose: The purpose of this study is to overcome limitations of conventional studies that to predict Baltic Dry Index (BDI). The study proposed applications of Artificial Neural Network (ANN) named Long Short-Term Memory (LSTM) to predict BDI. Methods: The BDI time-series prediction was carried out through eight variables related to the dry bulk market. The prediction was conducted in two steps. First, identifying the goodness of fitness for the BDI time-series of specific ANN models and determining the network structures to be used in the next step. While using ANN's generalization capability, the structures determined in the previous steps were used in the empirical prediction step, and the sliding-window method was applied to make a daily (one-day ahead) prediction. Results: At the empirical prediction step, it was possible to predict variable y(BDI time series) at point of time t by 8 variables (related to the dry bulk market) of x at point of time (t-1). LSTM, known to be good at learning over a long period of time, showed the best performance with higher predictive accuracy compared to Multi-Layer Perceptron (MLP) and Recurrent Neural Network (RNN). Conclusion: Applying this study to real business would require long-term predictions by applying more detailed forecasting techniques. I hope that the research can provide a point of reference in the dry bulk market, and furthermore in the decision-making and investment in the future of the shipping business as a whole.

Comparison of Fall Detection Systems Based on YOLOPose and Long Short-Term Memory

  • Seung Su Jeong;Nam Ho Kim;Yun Seop Yu
    • Journal of information and communication convergence engineering
    • /
    • 제22권2호
    • /
    • pp.139-144
    • /
    • 2024
  • In this study, four types of fall detection systems - designed with YOLOPose, principal component analysis (PCA), convolutional neural network (CNN), and long short-term memory (LSTM) architectures - were developed and compared in the detection of everyday falls. The experimental dataset encompassed seven types of activities: walking, lying, jumping, jumping in activities of daily living, falling backward, falling forward, and falling sideways. Keypoints extracted from YOLOPose were entered into the following architectures: RAW-LSTM, PCA-LSTM, RAW-PCA-LSTM, and PCA-CNN-LSTM. For the PCA architectures, the reduced input size stemming from a dimensionality reduction enhanced the operational efficiency in terms of computational time and memory at the cost of decreased accuracy. In contrast, the addition of a CNN resulted in higher complexity and lower accuracy. The RAW-LSTM architecture, which did not include either PCA or CNN, had the least number of parameters, which resulted in the best computational time and memory while also achieving the highest accuracy.

An accident diagnosis algorithm using long short-term memory

  • Yang, Jaemin;Kim, Jonghyun
    • Nuclear Engineering and Technology
    • /
    • 제50권4호
    • /
    • pp.582-588
    • /
    • 2018
  • Accident diagnosis is one of the complex tasks for nuclear power plant (NPP) operators. In abnormal or emergency situations, the diagnostic activity of the NPP states is burdensome though necessary. Numerous computer-based methods and operator support systems have been suggested to address this problem. Among them, the recurrent neural network (RNN) has performed well at analyzing time series data. This study proposes an algorithm for accident diagnosis using long short-term memory (LSTM), which is a kind of RNN, which improves the limitation for time reflection. The algorithm consists of preprocessing, the LSTM network, and postprocessing. In the LSTM-based algorithm, preprocessed input variables are calculated to output the accident diagnosis results. The outputs are also postprocessed using softmax to determine the ranking of accident diagnosis results with probabilities. This algorithm was trained using a compact nuclear simulator for several accidents: a loss of coolant accident, a steam generator tube rupture, and a main steam line break. The trained algorithm was also tested to demonstrate the feasibility of diagnosing NPP accidents.

The roles of differencing and dimension reduction in machine learning forecasting of employment level using the FRED big data

  • Choi, Ji-Eun;Shin, Dong Wan
    • Communications for Statistical Applications and Methods
    • /
    • 제26권5호
    • /
    • pp.497-506
    • /
    • 2019
  • Forecasting the U.S. employment level is made using machine learning methods of the artificial neural network: deep neural network, long short term memory (LSTM), gated recurrent unit (GRU). We consider the big data of the federal reserve economic data among which 105 important macroeconomic variables chosen by McCracken and Ng (Journal of Business and Economic Statistics, 34, 574-589, 2016) are considered as predictors. We investigate the influence of the two statistical issues of the dimension reduction and time series differencing on the machine learning forecast. An out-of-sample forecast comparison shows that (LSTM, GRU) with differencing performs better than the autoregressive model and the dimension reduction improves long-term forecasts and some short-term forecasts.

Long Short-Term Memory를 이용한 부산항 조위 예측 (Tidal Level Prediction of Busan Port using Long Short-Term Memory)

  • 김해림;전용호;박재형;윤한삼
    • 해양환경안전학회지
    • /
    • 제28권4호
    • /
    • pp.469-476
    • /
    • 2022
  • 본 연구는 조위 관측자료를 이용하여 부산항에서의 장기 조위 자료를 생성하는 Long Short-Term Memory (LSTM)으로 구현된 순환신경망 모델을 개발하였다. 국립해양조사원의 부산 신항과 통영에서 관측된 조위 자료를 모델 입력 자료로 사용하여 부산항의 조위를 예측하였다. 모델에 대하여 2019년 1월 한 달의 학습을 수행하였으며, 이후 2019년 2월에서 2020년 1월까지 1년에 대하여 정확도를 계산하였다. 구축된 모델은 부산 신항과 통영의 조위 시계열을 함께 입력한 경우에 상관계수 0.997 및 평균 제곱근 오차 2.69 m로 가장 성능이 높았다. 본 연구 결과를 바탕으로 딥러닝 순환신경망 모델을 이용하여 임의 항만의 장기 조위 자료 예측이 가능함을 알 수 있었다.

메모리 요소를 활용한 신경망 연구 동향 (A Survey on Neural Networks Using Memory Component)

  • 이지환;박진욱;김재형;김재인;노홍찬;박상현
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제7권8호
    • /
    • pp.307-324
    • /
    • 2018
  • 최근 순환 신경 망(Recurrent Neural Networks)은 시간에 대한 의존성을 고려한 구조를 통해 순차 데이터(Sequential data)의 예측 문제 해결에서 각광받고 있다. 하지만 순차 데이터의 시간 스텝이 늘어남에 따라 발생하는 그라디언트 소실(Gradients vanishing)이 문제로 대두되었다. 이를 해결하기 위해 장단기 기억 모델(Long Short-Term Memory)이 제안되었지만, 많은 데이터를 저장하고 장기간 보존하는 데에 한계가 있다. 따라서 순환 신경망과 메모리 요소(Memory component)를 활용한 학습 모델인 메모리-증대 신경망(Memory-Augmented Neural Networks)에 대한 연구가 최근 활발히 진행되고 있다. 본 논문에서는 딥 러닝(Deep Learning) 분야의 화두로 떠오른 메모리-증대 신경망 주요 모델들의 구조와 특징을 열거하고, 이를 활용한 최신 기법들과 향후 연구 방향을 제시한다.

A robust collision prediction and detection method based on neural network for autonomous delivery robots

  • Seonghun Seo;Hoon Jung
    • ETRI Journal
    • /
    • 제45권2호
    • /
    • pp.329-337
    • /
    • 2023
  • For safe last-mile autonomous robot delivery services in complex environments, rapid and accurate collision prediction and detection is vital. This study proposes a suitable neural network model that relies on multiple navigation sensors. A light detection and ranging technique is used to measure the relative distances to potential collision obstacles along the robot's path of motion, and an accelerometer is used to detect impacts. The proposed method tightly couples relative distance and acceleration time-series data in a complementary fashion to minimize errors. A long short-term memory, fully connected layer, and SoftMax function are integrated to train and classify the rapidly changing collision countermeasure state during robot motion. Simulation results show that the proposed method effectively performs collision prediction and detection for various obstacles.

Traffic-based reinforcement learning with neural network algorithm in fog computing environment

  • Jung, Tae-Won;Lee, Jong-Yong;Jung, Kye-Dong
    • International Journal of Internet, Broadcasting and Communication
    • /
    • 제12권1호
    • /
    • pp.144-150
    • /
    • 2020
  • Reinforcement learning is a technology that can present successful and creative solutions in many areas. This reinforcement learning technology was used to deploy containers from cloud servers to fog servers to help them learn the maximization of rewards due to reduced traffic. Leveraging reinforcement learning is aimed at predicting traffic in the network and optimizing traffic-based fog computing network environment for cloud, fog and clients. The reinforcement learning system collects network traffic data from the fog server and IoT. Reinforcement learning neural networks, which use collected traffic data as input values, can consist of Long Short-Term Memory (LSTM) neural networks in network environments that support fog computing, to learn time series data and to predict optimized traffic. Description of the input and output values of the traffic-based reinforcement learning LSTM neural network, the composition of the node, the activation function and error function of the hidden layer, the overfitting method, and the optimization algorithm.

Dynamic deflection monitoring method for long-span cable-stayed bridge based on bi-directional long short-term memory neural network

  • Yi-Fan Li;Wen-Yu He;Wei-Xin Ren;Gang Liu;Hai-Peng Sun
    • Smart Structures and Systems
    • /
    • 제32권5호
    • /
    • pp.297-308
    • /
    • 2023
  • Dynamic deflection is important for evaluating the performance of a long-span cable-stayed bridge, and its continuous measurement is still cumbersome. This study proposes a dynamic deflection monitoring method for cable-stayed bridge based on Bi-directional Long Short-term Memory (BiLSTM) neural network taking advantages of the characteristics of spatial variation of cable acceleration response (CAR) and main girder deflection response (MGDR). Firstly, the relationship between the spatial and temporal variation of the CAR and the MGDR is described based on the geometric deformation of the bridge. Then a data-driven relational model based on BiLSTM neural network is established using CAR and MGDR data, and it is further used to monitor the MGDR via measuring the CAR. Finally, numerical simulations and field test are conducted to verify the proposed method. The root mean squared error (RMSE) of the numerical simulations are less than 4 while the RMSE of the field test is 1.5782, which indicate that it provides a cost-effective and convenient method for real-time deflection monitoring of cable-stayed bridges.

DR-LSTM: Dimension reduction based deep learning approach to predict stock price

  • Ah-ram Lee;Jae Youn Ahn;Ji Eun Choi;Kyongwon Kim
    • Communications for Statistical Applications and Methods
    • /
    • 제31권2호
    • /
    • pp.213-234
    • /
    • 2024
  • In recent decades, increasing research attention has been directed toward predicting the price of stocks in financial markets using deep learning methods. For instance, recurrent neural network (RNN) is known to be competitive for datasets with time-series data. Long short term memory (LSTM) further improves RNN by providing an alternative approach to the gradient loss problem. LSTM has its own advantage in predictive accuracy by retaining memory for a longer time. In this paper, we combine both supervised and unsupervised dimension reduction methods with LSTM to enhance the forecasting performance and refer to this as a dimension reduction based LSTM (DR-LSTM) approach. For a supervised dimension reduction method, we use methods such as sliced inverse regression (SIR), sparse SIR, and kernel SIR. Furthermore, principal component analysis (PCA), sparse PCA, and kernel PCA are used as unsupervised dimension reduction methods. Using datasets of real stock market index (S&P 500, STOXX Europe 600, and KOSPI), we present a comparative study on predictive accuracy between six DR-LSTM methods and time series modeling.