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Abstract

In this study, four types of fall detection systems – designed with YOLOPose, principal component analysis (PCA), convolutional

neural network (CNN), and long short-term memory (LSTM) architectures – were developed and compared in the detection of

everyday falls. The experimental dataset encompassed seven types of activities: walking, lying, jumping, jumping in activities of

daily living, falling backward, falling forward, and falling sideways. Keypoints extracted from YOLOPose were entered into the

following architectures: RAW-LSTM, PCA-LSTM, RAW-PCA-LSTM, and PCA-CNN-LSTM. For the PCA architectures, the

reduced input size stemming from a dimensionality reduction enhanced the operational efficiency in terms of computational time

and memory at the cost of decreased accuracy. In contrast, the addition of a CNN resulted in higher complexity and lower

accuracy. The RAW-LSTM architecture, which did not include either PCA or CNN, had the least number of parameters, which

resulted in the best computational time and memory while also achieving the highest accuracy.

Index Terms: Fall detection, The elderly, Long short-term memory (LSTM), Principal component analysis (PCA),

Convolutional neural network (CNN)

I. INTRODUCTION

According to the World Health Organization (WHO), falls

are the second leading cause of unintended, unexpected, or

accidental death [1]. Furthermore, falls often result in serious

injuries such as femur neck fractures, neurological damage,

and skin burns [2]. In the process of physical activities, falls

can be detected using sensors, images, or videos. Advances

in computer vision and network technologies have made it

possible to quickly detect falls and transmit relevant infor-

mation, thereby enabling rapid detection and response. In

addition, a system was developed to track and monitor users

in real time, allowing feedback to be sent to medical profes-

sionals [3]. Users can be monitored via wearable sensors,

such as gyroscopes and accelerometers [4-7]; visual sensors,

such as cameras [8-12]; or ambient sensors, such as active

infrared sensors, RFID, ultrasonic sensors, radar, and micro-

phones [13-16].

In video-based approaches, motion information is acquired

as features extracted from image frames captured by a cam-

era. Human movements can be visually classified using sys-

tems such as convolutional neural networks (CNNs), human

position estimation (HPE), object detection, and optical flow.

A fall detection system based on principal component analy-

sis (PCA) has previously been developed using optical flow

[17,18], which refers to the visible movement of light pat-

terns in a video. Optical flow reflects changes in lighting

that stem from motion within an image and connects lines

over time. Specifically, the flow of light is calculated using

the Luca–Kanade algorithm to determine movement. How-
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ever, this method does not differentiate between the motion

of people and that of objects. Furthermore, this approach is

vulnerable to fast-moving objects, and even if no motion has

occurred, the system may misinterpret changes in contrast

caused by camera noise as motion. To compensate for these

shortcomings, HPE techniques [8-12] have been developed

to identify people through deep learning networks, such as a

CNNs. These techniques are designed to track identified per-

sons by locating key points, such as those corresponding to

the human skeleton. Among recently developed HPE meth-

ods, YOLOPose can simultaneously identify multiple people

within an image or a video, enabling relatively accurate real-

time processing [19,20]. The YOLOPose model is a kinetic

model that predicts 17 keypoints in a 2D human image. In

fall detection systems, data collected over time are used to

effectively identify occurrences of falling [9]. Recurrent neu-

ral networks (RNNs) [21], long short-term memory (LSTM)

[22], and gate recurrent units (GRUs) [10] have all been

employed for fall detection. In particular, the LSTM and

GRU architectures, as well as CNN-LSTM hybrid models,

have recently been utilized to solve the vanishing gradient

problem inherent to RNNs [12,15]. The following fall detec-

tion architectures have been developed for HPE methods:

1. Architecture 1: Keypoints corresponding to the skeleton

are measured via kinetic sensors, such as Microsoft

Kinect RGBD [12] or HPE methods [22], and directly

passed into an LSTM network.

2. Architecture 2: Keypoints extracted via HPE are passed

to a CNN or CNN-LSTM network. In the latter, convo-

lutional layers are used to extract input data features

while the LSTM network supports sequence prediction

[9,10,12,23,24].

3. Architecture 3: Geometric information pertaining to the

human body is calculated to reduce the input dimen-

sionality, and the extracted features are passed to an

LSTM model and support vector machine (SVM) to

classify falls and activities of daily living (ADL) [25]. 

4. Architecture 4: Data preprocessed via dimensional

reduction, such as extracted keypoints, are passed to a

CNN or CNN-LSTM network.

To our knowledge, a comparative evaluation of the four

architectures in terms of accuracy, computation time, and

memory efficiency has never been conducted previously.

This article presents four fall detection algorithms that

classify ADL and falls using keypoint data representing four

types of ADL and three types of falls extracted by YOLO-

Pose. In a comparative evaluation, the accuracy of inference,

computation time, and memory efficiency were calculated

for all four algorithms. Section 2 describes the subjects and

datasets used throughout this study, as well as the proposed

methods, and Section 3 presents the results of the compara-

tive evaluation. Finally, Section 4 concludes the study.

II. MATERIALS and METHODS

A. Subjects and dataset

A dataset comprising fall and ADL occurrences was com-

piled, encompassing 1190 images [18], of which 20 and 10

images for each fall and ADL were obtained from seven and

three applicants, respectively. To enhance the diversity of

training data, the images were augmented by horizontal

reflection, for a total of 2380 images. Seven activities were

included in the dataset: walking, lying, jumping, jumping in

ADL, falling backward, falling forward, and falling sideways

[18]. All individuals represented in the data were 20-50

years old, 160-180 cm tall, and weighing 50-85 kg. Images

were recorded at 50 frames per second (FPS), with the fram-

erate dropping to 25 FPS in the event of a fall. The video

data were recorded at 10 FPS owing to the environmental

and systemic variability of CCTVs, as this framerate is con-

sidered a minimal standard. Furthermore, a framerate of 10

FPS consumes very little memory, ensuring a highly efficient

training process.

B. Proposed fall detection algorithms

Fig. 1 depicts four types of fall detection architectures,

showing the 17 keypoints extracted from YOLOPose along

with the eigenvector matrices U1 and U2 obtained from the

PCA, 1DCNN, and LSTM networks. In the RAW-LSTM and

RAW-CNN-LSTM architectures, keypoints were passed to

the LSTM directly, whereas in the PCA-LSTM and PCA-

CNN-LSTM models, keypoints were first dimensionally

reduced via PCA. The YOLOPose network was used to

extract 34 data points corresponding to the x and y coordi-

nates of 17 keypoints identified within each video frame. In

the PCA-enabled architectures, the center point (mx, my) and

slope (θ ) of each keypoint were extracted. With the addition

of a CNN architecture, a feature map was generated using

either the feature points obtained via PCA, or the raw key-

point data. To construct the feature map, a 1D filter was used

to extract feature points, with padding used to maintain the

time component. The stride was set to 1, and the filter size

was set to 2. No additional layers were used. Although

CNNs typically extract feature points from images using a

2D filter, the data used in this study were separated into the

x and y components, and 1D filters were used instead. The

CNN consisted of two layers, with the first and second input

values set to 64 and 128, respectively. The LSTM network

was trained to classify the seven activities using three types

of inputs: raw skeleton keypoint data obtained via YOLO-

Pose, feature points extracted via PCA, and feature map data

extracted by the CNN. The LSTM network comprised three

layers and one dense layer. The first, second, and third input
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values were set to 64, 128, and 128, respectively. The feature

map was split to enable the classification of seven activities

in the dense layer, with Softmax predicting the most likely

behavior. Adaptive Momentum was used as the optimizer. In

the hybrid CNN-LSTM architecture, data features are extracted

by the CNN before being passed to the LSTM [9,10,12,

23,24]. Fig. 2 presents an overall flowchart of all four algo-

rithms. The processed data were allocated between training

and testing sets through a validation process at an 8:2 ratio

[26]. To prevent overfitting, L2 regularization was applied

with a lambda value of 0.065, as determined by the parame-

ter optimization method proposed in [6]. Upon successful

completion of training, each model’s accuracy was deter-

mined using the validation data.

Min-max normalization [6] was applied to the feature

points extracted via PCA, with the normalized (mx, my) and θ

used as indicators of speed and slope for fall detection,

respectively.

C. Parameter calculation

The number of parameters in the CNN components of the

hybrid models can be expressed as [27]

NPCNN = Ninput Nfh Nfw Nkernel + Nkernel, (3)

where Ninput, Nfh Nfw, and Nkernel represent the input, filter

height, filter width, and kernel size, respectively. The num-

ber of parameters in the LSTM network is expressed as [28] 

NPLSTM = 4[(Ninput + 1) Noutput + N2
output], (4)

where Ninput and Noutput are the input and output sizes,

respectively.

When PCA was employed to reduce input size, the number

of parameters also decreased. This in turn decreased the

algorithm complexity, thereby enhancing memory efficiency

and the speed of computation. Tables 1 and 2 summarize the

output shape and number of parameters used in each of the

proposed architectures, with parentheses indicating parame-

ters used after applying PCA. For example, the first LSTM

layer of the RAW-LSTM architecture has input and output

sizes of 34 and 64, respectively; thus, the total number of

parameters is calculated as 4 × ((34 + 1) × 64 + 642) = 25344.

In contrast, the first CNN layer of the PCA-CNN-LSTM

architecture has a 1DCNN filter height, filter width, input

Fig. 1. Proposed fall detection architectures. (a) Raw-LSTM, (b) PCA-

LSTM, (c) RAW-CNN-LSTM, and (d) PCA-CNN-LSTM.

Fig. 2. Flow chart of proposed fall detection algorithms.
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size, and kernel size of 1, 2, 3, and 64, respectively; thus, the

number of parameters is calculated as 3 × 1 × 2 × 64 + 64 =

448.

III. RESULTS

Fig. 3 shows the confusion matrices obtained by the four

architectures using the validation data, with Table 3 listing

the corresponding evaluation results. Because the data were

distributed between training and validation sets at a ratio of

8:2, 1904 and 476 activities were used for training and vali-

dation, respectively. From the results, a slight decrease in

accuracy can be observed following the application of PCA,

which can be regarded as the cost of the enhanced computa-

tion time and memory efficiency. The validation accuracy

was also slightly lower when applying the CNN, which also

increased model complexity. Specifically, the RAW-LSTM

architecture achieved a maximal validation accuracy of

100% while also exhibiting optimal memory use and compu-

tation time, as it requires less training parameters than the

hybrid architectures.

IV. CONCLUSION

In this study, the four types of fall detection architectures

were investigated in terms of accuracy, computation time,

and memory efficiency. In the case of PCA applications, the

reduced input dimensionality enhanced the computation time

and memory efficiency while slightly decreasing accuracy.

In contrast, the addition of a 1D CNN led to both increased

complexity and decreased accuracy. Overall, the RAW-

LSTM architecture, which did not include PCA or CNN

achieved the best accuracy, computational time, and memory

efficiency.
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