• 제목/요약/키워드: long short-term memory recurrent network

검색결과 143건 처리시간 0.023초

Long Short-Term Memory를 이용한 부산항 조위 예측 (Tidal Level Prediction of Busan Port using Long Short-Term Memory)

  • 김해림;전용호;박재형;윤한삼
    • 해양환경안전학회지
    • /
    • 제28권4호
    • /
    • pp.469-476
    • /
    • 2022
  • 본 연구는 조위 관측자료를 이용하여 부산항에서의 장기 조위 자료를 생성하는 Long Short-Term Memory (LSTM)으로 구현된 순환신경망 모델을 개발하였다. 국립해양조사원의 부산 신항과 통영에서 관측된 조위 자료를 모델 입력 자료로 사용하여 부산항의 조위를 예측하였다. 모델에 대하여 2019년 1월 한 달의 학습을 수행하였으며, 이후 2019년 2월에서 2020년 1월까지 1년에 대하여 정확도를 계산하였다. 구축된 모델은 부산 신항과 통영의 조위 시계열을 함께 입력한 경우에 상관계수 0.997 및 평균 제곱근 오차 2.69 m로 가장 성능이 높았다. 본 연구 결과를 바탕으로 딥러닝 순환신경망 모델을 이용하여 임의 항만의 장기 조위 자료 예측이 가능함을 알 수 있었다.

An accident diagnosis algorithm using long short-term memory

  • Yang, Jaemin;Kim, Jonghyun
    • Nuclear Engineering and Technology
    • /
    • 제50권4호
    • /
    • pp.582-588
    • /
    • 2018
  • Accident diagnosis is one of the complex tasks for nuclear power plant (NPP) operators. In abnormal or emergency situations, the diagnostic activity of the NPP states is burdensome though necessary. Numerous computer-based methods and operator support systems have been suggested to address this problem. Among them, the recurrent neural network (RNN) has performed well at analyzing time series data. This study proposes an algorithm for accident diagnosis using long short-term memory (LSTM), which is a kind of RNN, which improves the limitation for time reflection. The algorithm consists of preprocessing, the LSTM network, and postprocessing. In the LSTM-based algorithm, preprocessed input variables are calculated to output the accident diagnosis results. The outputs are also postprocessed using softmax to determine the ranking of accident diagnosis results with probabilities. This algorithm was trained using a compact nuclear simulator for several accidents: a loss of coolant accident, a steam generator tube rupture, and a main steam line break. The trained algorithm was also tested to demonstrate the feasibility of diagnosing NPP accidents.

A SE Approach for Machine Learning Prediction of the Response of an NPP Undergoing CEA Ejection Accident

  • Ditsietsi Malale;Aya Diab
    • 시스템엔지니어링학술지
    • /
    • 제19권2호
    • /
    • pp.18-31
    • /
    • 2023
  • Exploring artificial intelligence and machine learning for nuclear safety has witnessed increased interest in recent years. To contribute to this area of research, a machine learning model capable of accurately predicting nuclear power plant response with minimal computational cost is proposed. To develop a robust machine learning model, the Best Estimate Plus Uncertainty (BEPU) approach was used to generate a database to train three models and select the best of the three. The BEPU analysis was performed by coupling Dakota platform with the best estimate thermal hydraulics code RELAP/SCDAPSIM/MOD 3.4. The Code Scaling Applicability and Uncertainty approach was adopted, along with Wilks' theorem to obtain a statistically representative sample that satisfies the USNRC 95/95 rule with 95% probability and 95% confidence level. The generated database was used to train three models based on Recurrent Neural Networks; specifically, Long Short-Term Memory, Gated Recurrent Unit, and a hybrid model with Long Short-Term Memory coupled to Convolutional Neural Network. In this paper, the System Engineering approach was utilized to identify requirements, stakeholders, and functional and physical architecture to develop this project and ensure success in verification and validation activities necessary to ensure the efficient development of ML meta-models capable of predicting of the nuclear power plant response.

The roles of differencing and dimension reduction in machine learning forecasting of employment level using the FRED big data

  • Choi, Ji-Eun;Shin, Dong Wan
    • Communications for Statistical Applications and Methods
    • /
    • 제26권5호
    • /
    • pp.497-506
    • /
    • 2019
  • Forecasting the U.S. employment level is made using machine learning methods of the artificial neural network: deep neural network, long short term memory (LSTM), gated recurrent unit (GRU). We consider the big data of the federal reserve economic data among which 105 important macroeconomic variables chosen by McCracken and Ng (Journal of Business and Economic Statistics, 34, 574-589, 2016) are considered as predictors. We investigate the influence of the two statistical issues of the dimension reduction and time series differencing on the machine learning forecast. An out-of-sample forecast comparison shows that (LSTM, GRU) with differencing performs better than the autoregressive model and the dimension reduction improves long-term forecasts and some short-term forecasts.

Long Short Term Memory based Political Polarity Analysis in Cyber Public Sphere

  • Kang, Hyeon;Kang, Dae-Ki
    • International Journal of Advanced Culture Technology
    • /
    • 제5권4호
    • /
    • pp.57-62
    • /
    • 2017
  • In this paper, we applied long short term memory(LSTM) for classifying political polarity in cyber public sphere. The data collected from the cyber public sphere is transformed into word corpus data through word embedding. Based on this word corpus data, we train recurrent neural network (RNN) which is connected by LSTM's. Softmax function is applied at the output of the RNN. We conducted our proposed system to obtain experimental results, and we will enhance our proposed system by refining LSTM in our system.

Comparative Analysis of PM10 Prediction Performance between Neural Network Models

  • Jung, Yong-Jin;Oh, Chang-Heon
    • Journal of information and communication convergence engineering
    • /
    • 제19권4호
    • /
    • pp.241-247
    • /
    • 2021
  • Particulate matter has emerged as a serious global problem, necessitating highly reliable information on the matter. Therefore, various algorithms have been used in studies to predict particulate matter. In this study, we compared the prediction performance of neural network models that have been actively studied for particulate matter prediction. Among the neural network algorithms, a deep neural network (DNN), a recurrent neural network, and long short-term memory were used to design the optimal prediction model using a hyper-parameter search. In the comparative analysis of the prediction performance of each model, the DNN model showed a lower root mean square error (RMSE) than the other algorithms in the performance comparison using the RMSE and the level of accuracy as metrics for evaluation. The stability of the recurrent neural network was slightly lower than that of the other algorithms, although the accuracy was higher.

Long Short-Term Memory를 활용한 건화물운임지수 예측 (Prediction of Baltic Dry Index by Applications of Long Short-Term Memory)

  • 한민수;유성진
    • 품질경영학회지
    • /
    • 제47권3호
    • /
    • pp.497-508
    • /
    • 2019
  • Purpose: The purpose of this study is to overcome limitations of conventional studies that to predict Baltic Dry Index (BDI). The study proposed applications of Artificial Neural Network (ANN) named Long Short-Term Memory (LSTM) to predict BDI. Methods: The BDI time-series prediction was carried out through eight variables related to the dry bulk market. The prediction was conducted in two steps. First, identifying the goodness of fitness for the BDI time-series of specific ANN models and determining the network structures to be used in the next step. While using ANN's generalization capability, the structures determined in the previous steps were used in the empirical prediction step, and the sliding-window method was applied to make a daily (one-day ahead) prediction. Results: At the empirical prediction step, it was possible to predict variable y(BDI time series) at point of time t by 8 variables (related to the dry bulk market) of x at point of time (t-1). LSTM, known to be good at learning over a long period of time, showed the best performance with higher predictive accuracy compared to Multi-Layer Perceptron (MLP) and Recurrent Neural Network (RNN). Conclusion: Applying this study to real business would require long-term predictions by applying more detailed forecasting techniques. I hope that the research can provide a point of reference in the dry bulk market, and furthermore in the decision-making and investment in the future of the shipping business as a whole.

미세먼지 농도 예측을 위한 딥러닝 알고리즘별 성능 비교 (Comparative Study of Performance of Deep Learning Algorithms in Particulate Matter Concentration Prediction)

  • 조경우;정용진;오창헌
    • 한국항행학회논문지
    • /
    • 제25권5호
    • /
    • pp.409-414
    • /
    • 2021
  • 미세먼지에 대한 심각성이 사회적으로 대두됨에 따라 대중들은 미세먼지 예보에 대한 정보의 높은 신뢰성을 요구하고 있다. 이에 따라 다양한 신경망 알고리즘을 이용하여 미세먼지 예측을 위한 연구가 활발히 진행되고 있다. 본 논문에서는 미세먼지 예측을 위해 다양한 알고리즘으로 연구되고 있는 신경망 알고리즘들 중 대표적인 알고리즘들의 예측 성능 비교를 진행하였다. 신경망 알고리즘 중 DNN(deep neural network), RNN(recurrent neural network), LSTM(long short-term memory)을 이용하였으며, 하이퍼 파라미터 탐색을 이용하여 최적의 예측 모델을 설계하였다. 각 모델의 예측 성능 비교 분석 결과, 실제 값과 예측 값의 변화 추이는 전반적으로 좋은 성능을 보였다. RMSE와 정확도를 기준으로 한 분석에서는 DNN 예측 모델이 다른 예측 모델에 비해 예측 오차에 대한 안정성을 갖는 것을 확인하였다.

Recurrent Neural Network를 활용한 서비스 이벤트 관계 분석에 관한 연구 (The Study of Service Event Relation Analysis Using Recurrent Neural Network)

  • 전우성;박영석;최정일
    • 한국IT서비스학회지
    • /
    • 제17권4호
    • /
    • pp.75-83
    • /
    • 2018
  • Enterprises need to monitor systems for reliable IT service operations to quickly detect and respond to events affecting the service, thereby preventing failures. Events in non-critical systems can be seen as a precursor to critical system incidents. Therefore, event relationship analysis in the operation of IT services can proactively recognize and prevent faults by identifying non-critical events and their relationships with incidents. This study used the Recurrent Neural Network and Long Short Term Memory techniques to create a model to analyze event relationships in a system and to verify which models are suitable for analyzing event relationships. Verification has shown that both models are capable of analyzing event relationships and that RNN models are more suitable than LSTM models. Based on the pattern of events occurring, this model is expected to support the prediction of the next occurrence of events and help identify the root cause of incidents to help prevent failures and improve the quality of IT services.

Electroencephalography-based imagined speech recognition using deep long short-term memory network

  • Agarwal, Prabhakar;Kumar, Sandeep
    • ETRI Journal
    • /
    • 제44권4호
    • /
    • pp.672-685
    • /
    • 2022
  • This article proposes a subject-independent application of brain-computer interfacing (BCI). A 32-channel Electroencephalography (EEG) device is used to measure imagined speech (SI) of four words (sos, stop, medicine, washroom) and one phrase (come-here) across 13 subjects. A deep long short-term memory (LSTM) network has been adopted to recognize the above signals in seven EEG frequency bands individually in nine major regions of the brain. The results show a maximum accuracy of 73.56% and a network prediction time (NPT) of 0.14 s which are superior to other state-of-the-art techniques in the literature. Our analysis reveals that the alpha band can recognize SI better than other EEG frequencies. To reinforce our findings, the above work has been compared by models based on the gated recurrent unit (GRU), convolutional neural network (CNN), and six conventional classifiers. The results show that the LSTM model has 46.86% more average accuracy in the alpha band and 74.54% less average NPT than CNN. The maximum accuracy of GRU was 8.34% less than the LSTM network. Deep networks performed better than traditional classifiers.