In this study, after developing an LSTM-based deep learning model for estimating daily runoff in the Soyang River Dam basin, the accuracy of the model for various combinations of model structure and input data was investigated. A model was built based on the database consisting of average daily precipitation, average daily temperature, average daily wind speed (input up to here), and daily average flow rate (output) during the first 12 years (1997.1.1-2008.12.31). The Nash-Sutcliffe Model Efficiency Coefficient (NSE) and RMSE were examined for validation using the flow discharge data of the later 12 years (2009.1.1-2020.12.31). The combination that showed the highest accuracy was the case in which all possible input data (12 years of daily precipitation, weather temperature, wind speed) were used on the LSTM model structure with 64 hidden units. The NSE and RMSE of the verification period were 0.862 and 76.8 m3/s, respectively. When the number of hidden units of LSTM exceeds 500, the performance degradation of the model due to overfitting begins to appear, and when the number of hidden units exceeds 1000, the overfitting problem becomes prominent. A model with very high performance (NSE=0.8~0.84) could be obtained when only 12 years of daily precipitation was used for model training. A model with reasonably high performance (NSE=0.63-0.85) when only one year of input data was used for model training. In particular, an accurate model (NSE=0.85) could be obtained if the one year of training data contains a wide magnitude of flow events such as extreme flow and droughts as well as normal events. If the training data includes both the normal and extreme flow rates, input data that is longer than 5 years did not significantly improve the model performance.
In this paper, we propose a method for restoring damaged audio files using deep neural network. It is different from the conventional file carving based restoration. The purpose of our method is to infer lost information which can not be restored by existing techniques such as the file carving. We have devised methods that can automate the tasks which are essential for the restoring but are inappropriate for humans. As a result of this study it has been shown that it is possible to restore the damaged files, which the conventional file carving method could not, by using tasks such as speech or nonspeech decision and speech encoder recognizer using a deep neural network.
Kim, Jonghee;Jung, Chanho;Kang, Dokeun;Lee, Chang Jin
Journal of IKEEE
/
v.24
no.4
/
pp.1176-1179
/
2020
Vessel path prediction methods generally predict the latitude and longitude of a future location directly. However, in the case of direct prediction, errors could be large since the possible output range is too broad. In addition, error accumulation could occur since recurrent neural networks-based methods employ previous predicted data to forecast future data. In this paper, we propose a vessel path prediction method that does not directly predict the longitude and latitude. Instead, the proposed method predicts the acceleration of the vessel. Then the acceleration is employed to generate the velocity and direction, and the values decide the longitude and latitude of the future location. In the experiment, we show that the proposed method makes smaller errors than the direct prediction method, while both methods employ the same model.
Journal of the Economic Geographical Society of Korea
/
v.25
no.1
/
pp.171-181
/
2022
The real estate price index plays key roles as quantitative data in real estate market analysis. International organizations including OECD publish the real estate price indexes by country, and the Korea Real Estate Board announces metropolitan-level and municipal-level indexes. However, when the index is set on the smaller spatial unit level than metropolitan and municipal-level, problems occur: missing values. As the spatial scope is narrowed down, there are cases where there are few or no transactions depending on the unit period, which lead index calculation difficult or even impossible. This study suggests a supervised learning-based machine learning model to compensate for missing values that may occur due to no transaction in a specific range and period. The models proposed in our research verify the accuracy of predicting the existing values and missing values.
Korea is pursuing a plan to switch and expand energy sources with a focus on renewable energy with the goal of becoming carbon neutral by 2050. As the instability of energy supply increases due to the intermittent nature of renewable energy, accurate prediction of the amount of renewable energy generation is becoming more important. Therefore, the government has opened a small-scale power brokerage market and is implementing a system that pays settlements according to the accuracy of renewable energy prediction. In this paper, a prediction model was implemented using a statistical model and an artificial intelligence model for the prediction of solar power generation. In addition, the results of prediction accuracy were compared and analyzed, and the revenue from the settlement amount of the renewable energy generation forecasting system was estimated.
Lee, Seung Yeon;Yoo, Hyung Ju;Lee, Sang Eun;Lee, Seung Oh
Proceedings of the Korea Water Resources Association Conference
/
2021.06a
/
pp.198-198
/
2021
최근 자연적, 사회적, 정책적 관점에서 하천관리의 중요성이 증대되면서 국가하천 정비를 통한 하천시설 관리의 책임이 증대되고 있다. 국가하천 5대강 본류의 친수지구 이용도 변화를 살펴보면 2015년에 비해 2019년에 면적당 이용객 수가 630,813(명/km2)이 증가하였음을 알 수 있었고(국토교통부, 2020) 본 연구에서는 이용자 수 증가율이 높은 편인 한강 내 하천이용시설을 대상으로 선정하여 해당 지역을 기계학습 기반의 수위예측 알고리즘에 적용하였다. 하천이용시설은 하천이용자가 편리하게 하천을 이용하기 위하여 설치한 시설로 공원시설(강서, 난지, 양화, 망원, 여의도, 이촌, 반포, 잠원, 뚝섬, 잠실, 광나루, 구리)을 위주로 분석하였다. 해당 시설의 침수피해를 고려하기 위해 시계열 자료에 특화된 LSTM(Long Short-term Memory)기법을 활용하여 수위예측 알고리즘을 개발하였고 이를 통해 도출된 홍수 예보로 재난을 대비하고 시설물을 체계적으로 관리하는 유지관리의 효과를 분석하고자 하였다. 입력 자료(input data)는 수위 (EL.m), 팔당댐 방류량 (m3/s), 강화대교의 조위(EL.m)를 사용하였으며 수위예측 알고리즘을 통해 6시간 후 예측 수위값을 도출하여 기존 2단계(주의보, 경보)였던 홍수 예보 단계에서 4단계(관심, 보행자통제, 차량통제, 경계)로 구축하였다. 기존과 세분화된 홍수예보를 적용했을 경우의 유지관리 비용과 편익을 산정하여 하천이용시설의 경제성을 비교·분석한 결과, 유지관리 비용이 기존 대비 약 5% 이상 절감되었고 편익은 약 1.5배 이상 증가하였으며 관리등급은 평균 C등급(보통) 이상 달성하였다. 이는 수위예측 알고리즘의 적용으로 하천이용 활성화 및 투자의 효율성에 목적을 두었으며 향후 분석결과를 토대로 경제성모델을 개발하여 국가하천 내 관리그룹에 적용하면 효율적인 유지관리체계를 제시할 수 있을 것으로 기대된다.
Kim, Hyun Il;Han, Kun Yeun;Kim, Tae Hyung;Choi, Kyu Hyun;Cho, Hyo Seop
Proceedings of the Korea Water Resources Association Conference
/
2021.06a
/
pp.332-332
/
2021
도시화가 상당히 이뤄지고 기습적인 폭우의 발생이 불확실하게 나타나는 시점에서 재산 및 인명피해를 야기할 수 있는 내수침수에 대한 위험도가 증가하고 있다. 내수침수에 대한 예측을 위하여 실측강우 또는 확률강우량 시나리오를 참조하고 연구대상 지역에 대한 1차원 그리고 2차원 수리학적 해석을 실시하는 연구가 오랫동안 진행되어 왔으나, 수치해석 모형의 경우 다양한 수문-지형학적 자료 및 계측 자료를 요구하고 집약적인 계산과정을 통한 단기간 예측에 어려움이 있음이 언급되어 왔다. 본 연구에서는 위와 같은 문제점을 해결하기 위하여 단일 도시 배수분구를 대상으로 관측 강우 자료, 1, 2차원 수치해석 모형, 기계학습 및 딥러닝 기법을 적용한 실시간 홍수위험지도 예측 모형을 개발하였다. 강우자료에 대하여 실시간으로 홍수량을 예측할 수 있도록 LSTM(Long-Short Term Memory) 기법을 적용하였으며, 전국단위 강우에 대한 다양한 1차원 도시유출해석 결과를 학습시킴으로써 예측을 수행하였다. 침수심의 공간적 분포의 경우 로지스틱 회귀를 이용하여, 기준 침수심에 대한 예측을 각각 수행하였다. 홍수위험 등급의 경우 침수심, 유속 그리고 잔해인자를 고려한 홍수위험등급 공식을 적용하여 산정하였으며, 이 결과를 랜덤포레스트(Random Forest)에 학습함으로써 실시간 예측을 수행할 수 있도록 개발하였다. 침수범위 및 홍수위험등급에 대한 예측은 격자 단위로 이뤄졌으며, 검증 자료의 부족으로 침수 흔적도를 통하여 검증된 2차원 침수해석 결과와 비교함으로써 예측력을 평가하였다. 본 기법은 특정 관측강우 또는 예측강우 자료가 입력되었을 때에, 도시 유역 단위로 접근이 불가하여 통제해야 할 구간을 실시간으로 예측하여 관리할 수 있을 것으로 판단된다.
Proceedings of the Korea Water Resources Association Conference
/
2022.05a
/
pp.37-37
/
2022
유효우량 산정을 위하여 국내에서 주로 사용되는 모형은 NRCS-CN(Natural Resources Conservation Service - curve number) 모형으로, 유역의 유출 능력을 나타내는 유출곡선지수(runoff curve number, CN)와 같은 NRCS-CN 모형의 매개변수들은 관측 강우-유출자료 또는 토양도, 토지피복지도 등을 이용하여 유역마다 결정된 값이 사용되고 있다. 그러나 유역의 CN값은 유역의 토양 상태와 같은 환경적 조건에 따라 달라질 수 있으며, 이를 반영하기 위하여 선행토양함수조건(antecedent moisture condition, AMC)을 이용하여 CN값을 조정하는 방법이 사용되고 있으나, AMC 조건에 따른 CN 값의 갑작스런 변화는 유출량의 극단적인 변화를 가져올 수 있다. NRCS-CN 모형과 더불어 강우 손실량 산정에 많이 사용되는 모형으로 Green-Ampt 모형이 있다. Green-Ampt 모형은 유역에서 발생하는 침투현상의 물리적 과정을 고려하는 모형이라는 장점이 있으나, 모형에 활용되는 다양한 물리적인 매개변수들을 산정하기 위해서는 유역에 대한 많은 조사가 선행되어야 한다. 또한 이렇게 산정된 매개변수들은 유역 내 토양이나 식생 조건 등에 따른 여러 불확실성을 내포하고 있어 실무적용에 어려움이 있다. 따라서 본 연구에서는, 현재 사용되고 있는 강우손실 모형들의 매개변수를 추정하기 위한 방법을 제시하고자 하였다. 본 연구에서 제시하는 방법은 인공지능(AI) 기술 중 하나인 딥러닝(deep-learning) 기법을 기반으로 하고 있으며, 딥러닝 모형으로는 장단기 메모리(Long Short-Term Memory, LSTM) 모형이 활용되었다. 딥러닝 모형의 입력 데이터는 유역에서의 강우특성이나 토양수분, 증발산, 식생 특성들을 나타내는 인자이며, 모의 결과는 유역에서 발생한 총 유출량으로 강우손실 모형들의 매개변수 값들은 이들을 활용하여 도출될 수 있다. 산정된 매개변수 값들을 강우손실 모형에 적용하여 실제 유역들에서의 유효우량 산정에 활용해보았으며, 동역학파 기반의 강우-유출 모형을 사용하여 유출을 예측해보았다. 예측된 유출수문곡선을 관측 자료와 비교 시 NSE=0.5 이상으로 산정되어 유출이 적절히 예측되었음을 확인했다.
International conference on construction engineering and project management
/
2022.06a
/
pp.877-885
/
2022
Vision-based activity recognition has been widely attempted at construction sites to estimate productivity and enhance workers' health and safety. Previous studies have focused on extracting an individual worker's postural information from sequential image frames for activity recognition. However, various trades of workers perform different tasks with similar postural patterns, which degrades the performance of activity recognition based on postural information. To this end, this research exploited a concept of human-object interaction, the interaction between a worker and their surrounding objects, considering the fact that trade workers interact with a specific object (e.g., working tools or construction materials) relevant to their trades. This research developed an approach to understand the context from sequential image frames based on four features: posture, object, spatial features, and temporal feature. Both posture and object features were used to analyze the interaction between the worker and the target object, and the other two features were used to detect movements from the entire region of image frames in both temporal and spatial domains. The developed approach used convolutional neural networks (CNN) for feature extractors and activity classifiers and long short-term memory (LSTM) was also used as an activity classifier. The developed approach provided an average accuracy of 85.96% for classifying 12 target construction tasks performed by two trades of workers, which was higher than two benchmark models. This experimental result indicated that integrating a concept of the human-object interaction offers great benefits in activity recognition when various trade workers coexist in a scene.
Ju-Yong Lee;Jae-Young Lee;Jiwoo Lee;Sangmun Shin;Jun-hyuk Jang;Jun-Hee Han
Journal of Korean Society of Industrial and Systems Engineering
/
v.46
no.3
/
pp.186-197
/
2023
In this study, we focus on the improvement of data quality transmitted from a weather buoy that guides a route of ships. The buoy has an Internet-of-Thing (IoT) including sensors to collect meteorological data and the buoy's status, and it also has a wireless communication device to send them to the central database in a ground control center and ships nearby. The time interval of data collected by the sensor is irregular, and fault data is often detected. Therefore, this study provides a framework to improve data quality using machine learning models. The normal data pattern is trained by machine learning models, and the trained models detect the fault data from the collected data set of the sensor and adjust them. For determining fault data, interquartile range (IQR) removes the value outside the outlier, and an NGBoost algorithm removes the data above the upper bound and below the lower bound. The removed data is interpolated using NGBoost or long-short term memory (LSTM) algorithm. The performance of the suggested process is evaluated by actual weather buoy data from Korea to improve the quality of 'AIR_TEMPERATURE' data by using other data from the same buoy. The performance of our proposed framework has been validated through computational experiments based on real-world data, confirming its suitability for practical applications in real-world scenarios.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.