• Title/Summary/Keyword: long short-term memory(LSTM)

Search Result 495, Processing Time 0.036 seconds

Driving Anomaly Pattern Detection System Based on Vehicle Internal Diagnostic Data Analysis (차량 내부 진단 데이터 분석 기반의 주행 이상 패턴 감지 시스템)

  • Tae-jeong Park;Ji-ho Park;Bo-yoon Seo;Jun-ha Shin;Kyung-hwan Choi;Hongseok Yoo
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2024.01a
    • /
    • pp.299-300
    • /
    • 2024
  • 첨단 기술의 발전과 함께 지능형 운전자 보조 시스템의 성능 및 교통 시스템 체계가 고도화됨에 따라 전반적인 교통사고 발생 건수는 줄어드는 추세지만 대한민국의 교통사고 발생 빈도는 아직 OECD 평균 대비 높은 실정이다. 특히, 2020년 경제 협력 개발 기구(OECD) 통계에 따르면 대한민국의 인구 10만 명당 교통사고 사망자 수는 회원국 36개 중 29위로 매우 높은 축에 속한다. 따라서, 본 논문에서는 교통사고 발생률을 낮추는 데 도움을 줄 수 있는 주행 이상 패턴 감지 시스템을 제안한다. 제안한 방법에서는 실시간 영상 분석을 통해 신호등 및 차선을 인식함과 동시 차량 내부 진단 데이터에 대한 시계열 분석을 기반으로 운전자의 운전 패턴을 분석한 후 평소와 다른 이상 징후를 발견하면 운전자에게 경고 알림을 제공하여 위험한 상황을 회피할 수 있도록 지원한다.

  • PDF

Forecasting Baltic Dry Index by Implementing Time-Series Decomposition and Data Augmentation Techniques (시계열 분해 및 데이터 증강 기법 활용 건화물운임지수 예측)

  • Han, Min Soo;Yu, Song Jin
    • Journal of Korean Society for Quality Management
    • /
    • v.50 no.4
    • /
    • pp.701-716
    • /
    • 2022
  • Purpose: This study aims to predict the dry cargo transportation market economy. The subject of this study is the BDI (Baltic Dry Index) time-series, an index representing the dry cargo transport market. Methods: In order to increase the accuracy of the BDI time-series, we have pre-processed the original time-series via time-series decomposition and data augmentation techniques and have used them for ANN learning. The ANN algorithms used are Multi-Layer Perceptron (MLP), Recurrent Neural Network (RNN), and Long Short-Term Memory (LSTM) to compare and analyze the case of learning and predicting by applying time-series decomposition and data augmentation techniques. The forecast period aims to make short-term predictions at the time of t+1. The period to be studied is from '22. 01. 07 to '22. 08. 26. Results: Only for the case of the MAPE (Mean Absolute Percentage Error) indicator, all ANN models used in the research has resulted in higher accuracy (1.422% on average) in multivariate prediction. Although it is not a remarkable improvement in prediction accuracy compared to uni-variate prediction results, it can be said that the improvement in ANN prediction performance has been achieved by utilizing time-series decomposition and data augmentation techniques that were significant and targeted throughout this study. Conclusion: Nevertheless, due to the nature of ANN, additional performance improvements can be expected according to the adjustment of the hyper-parameter. Therefore, it is necessary to try various applications of multiple learning algorithms and ANN optimization techniques. Such an approach would help solve problems with a small number of available data, such as the rapidly changing business environment or the current shipping market.

Symbolizing Numbers to Improve Neural Machine Translation (숫자 기호화를 통한 신경기계번역 성능 향상)

  • Kang, Cheongwoong;Ro, Youngheon;Kim, Jisu;Choi, Heeyoul
    • Journal of Digital Contents Society
    • /
    • v.19 no.6
    • /
    • pp.1161-1167
    • /
    • 2018
  • The development of machine learning has enabled machines to perform delicate tasks that only humans could do, and thus many companies have introduced machine learning based translators. Existing translators have good performances but they have problems in number translation. The translators often mistranslate numbers when the input sentence includes a large number. Furthermore, the output sentence structure completely changes even if only one number in the input sentence changes. In this paper, first, we optimized a neural machine translation model architecture that uses bidirectional RNN, LSTM, and the attention mechanism through data cleansing and changing the dictionary size. Then, we implemented a number-processing algorithm specialized in number translation and applied it to the neural machine translation model to solve the problems above. The paper includes the data cleansing method, an optimal dictionary size and the number-processing algorithm, as well as experiment results for translation performance based on the BLEU score.

Forecasting of the COVID-19 pandemic situation of Korea

  • Goo, Taewan;Apio, Catherine;Heo, Gyujin;Lee, Doeun;Lee, Jong Hyeok;Lim, Jisun;Han, Kyulhee;Park, Taesung
    • Genomics & Informatics
    • /
    • v.19 no.1
    • /
    • pp.11.1-11.8
    • /
    • 2021
  • For the novel coronavirus disease 2019 (COVID-19), predictive modeling, in the literature, uses broadly susceptible exposed infected recoverd (SEIR)/SIR, agent-based, curve-fitting models. Governments and legislative bodies rely on insights from prediction models to suggest new policies and to assess the effectiveness of enforced policies. Therefore, access to accurate outbreak prediction models is essential to obtain insights into the likely spread and consequences of infectious diseases. The objective of this study is to predict the future COVID-19 situation of Korea. Here, we employed 5 models for this analysis; SEIR, local linear regression (LLR), negative binomial (NB) regression, segment Poisson, deep-learning based long short-term memory models (LSTM) and tree based gradient boosting machine (GBM). After prediction, model performance comparison was evelauated using relative mean squared errors (RMSE) for two sets of train (January 20, 2020-December 31, 2020 and January 20, 2020-January 31, 2021) and testing data (January 1, 2021-February 28, 2021 and February 1, 2021-February 28, 2021) . Except for segmented Poisson model, the other models predicted a decline in the daily confirmed cases in the country for the coming future. RMSE values' comparison showed that LLR, GBM, SEIR, NB, and LSTM respectively, performed well in the forecasting of the pandemic situation of the country. A good understanding of the epidemic dynamics would greatly enhance the control and prevention of COVID-19 and other infectious diseases. Therefore, with increasing daily confirmed cases since this year, these results could help in the pandemic response by informing decisions about planning, resource allocation, and decision concerning social distancing policies.

Performance of Korean spontaneous speech recognizers based on an extended phone set derived from acoustic data (음향 데이터로부터 얻은 확장된 음소 단위를 이용한 한국어 자유발화 음성인식기의 성능)

  • Bang, Jeong-Uk;Kim, Sang-Hun;Kwon, Oh-Wook
    • Phonetics and Speech Sciences
    • /
    • v.11 no.3
    • /
    • pp.39-47
    • /
    • 2019
  • We propose a method to improve the performance of spontaneous speech recognizers by extending their phone set using speech data. In the proposed method, we first extract variable-length phoneme-level segments from broadcast speech signals, and convert them to fixed-length latent vectors using an long short-term memory (LSTM) classifier. We then cluster acoustically similar latent vectors and build a new phone set by choosing the number of clusters with the lowest Davies-Bouldin index. We also update the lexicon of the speech recognizer by choosing the pronunciation sequence of each word with the highest conditional probability. In order to analyze the acoustic characteristics of the new phone set, we visualize its spectral patterns and segment duration. Through speech recognition experiments using a larger training data set than our own previous work, we confirm that the new phone set yields better performance than the conventional phoneme-based and grapheme-based units in both spontaneous speech recognition and read speech recognition.

CAB: Classifying Arrhythmias based on Imbalanced Sensor Data

  • Wang, Yilin;Sun, Le;Subramani, Sudha
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.7
    • /
    • pp.2304-2320
    • /
    • 2021
  • Intelligently detecting anomalies in health sensor data streams (e.g., Electrocardiogram, ECG) can improve the development of E-health industry. The physiological signals of patients are collected through sensors. Timely diagnosis and treatment save medical resources, promote physical health, and reduce complications. However, it is difficult to automatically classify the ECG data, as the features of ECGs are difficult to extract. And the volume of labeled ECG data is limited, which affects the classification performance. In this paper, we propose a Generative Adversarial Network (GAN)-based deep learning framework (called CAB) for heart arrhythmia classification. CAB focuses on improving the detection accuracy based on a small number of labeled samples. It is trained based on the class-imbalance ECG data. Augmenting ECG data by a GAN model eliminates the impact of data scarcity. After data augmentation, CAB classifies the ECG data by using a Bidirectional Long Short Term Memory Recurrent Neural Network (Bi-LSTM). Experiment results show a better performance of CAB compared with state-of-the-art methods. The overall classification accuracy of CAB is 99.71%. The F1-scores of classifying Normal beats (N), Supraventricular ectopic beats (S), Ventricular ectopic beats (V), Fusion beats (F) and Unclassifiable beats (Q) heartbeats are 99.86%, 97.66%, 99.05%, 98.57% and 99.88%, respectively. Unclassifiable beats (Q) heartbeats are 99.86%, 97.66%, 99.05%, 98.57% and 99.88%, respectively.

Development of Data Visualized Web System for Virtual Power Forecasting based on Open Sources based Location Services using Deep Learning (오픈소스 기반 지도 서비스를 이용한 딥러닝 실시간 가상 전력수요 예측 가시화 웹 시스템)

  • Lee, JeongHwi;Kim, Dong Keun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.8
    • /
    • pp.1005-1012
    • /
    • 2021
  • Recently, the use of various location-based services-based location information systems using maps on the web has been expanding, and there is a need for a monitoring system that can check power demand in real time as an alternative to energy saving. In this study, we developed a deep learning real-time virtual power demand prediction web system using open source-based mapping service to analyze and predict the characteristics of power demand data using deep learning. In particular, the proposed system uses the LSTM(Long Short-Term Memory) deep learning model to enable power demand and predictive analysis locally, and provides visualization of analyzed information. Future proposed systems will not only be utilized to identify and analyze the supply and demand and forecast status of energy by region, but also apply to other industrial energies.

Personal Driving Style based ADAS Customization using Machine Learning for Public Driving Safety

  • Giyoung Hwang;Dongjun Jung;Yunyeong Goh;Jong-Moon Chung
    • Journal of Internet Computing and Services
    • /
    • v.24 no.1
    • /
    • pp.39-47
    • /
    • 2023
  • The development of autonomous driving and Advanced Driver Assistance System (ADAS) technology has grown rapidly in recent years. As most traffic accidents occur due to human error, self-driving vehicles can drastically reduce the number of accidents and crashes that occur on the roads today. Obviously, technical advancements in autonomous driving can lead to improved public driving safety. However, due to the current limitations in technology and lack of public trust in self-driving cars (and drones), the actual use of Autonomous Vehicles (AVs) is still significantly low. According to prior studies, people's acceptance of an AV is mainly determined by trust. It is proven that people still feel much more comfortable in personalized ADAS, designed with the way people drive. Based on such needs, a new attempt for a customized ADAS considering each driver's driving style is proposed in this paper. Each driver's behavior is divided into two categories: assertive and defensive. In this paper, a novel customized ADAS algorithm with high classification accuracy is designed, which divides each driver based on their driving style. Each driver's driving data is collected and simulated using CARLA, which is an open-source autonomous driving simulator. In addition, Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) machine learning algorithms are used to optimize the ADAS parameters. The proposed scheme results in a high classification accuracy of time series driving data. Furthermore, among the vast amount of CARLA-based feature data extracted from the drivers, distinguishable driving features are collected selectively using Support Vector Machine (SVM) technology by comparing the amount of influence on the classification of the two categories. Therefore, by extracting distinguishable features and eliminating outliers using SVM, the classification accuracy is significantly improved. Based on this classification, the ADAS sensors can be made more sensitive for the case of assertive drivers, enabling more advanced driving safety support. The proposed technology of this paper is especially important because currently, the state-of-the-art level of autonomous driving is at level 3 (based on the SAE International driving automation standards), which requires advanced functions that can assist drivers using ADAS technology.

Comparative study of meteorological data for river level prediction model (하천 수위 예측 모델을 위한 기상 데이터 비교 연구)

  • Cho, Minwoo;Yoon, Jinwook;Kim, Changsu;Jung, Heokyung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.05a
    • /
    • pp.491-493
    • /
    • 2022
  • Flood damage due to torrential rains and typhoons is occurring in many parts of the world. In this paper, we propose a water level prediction model using water level, precipitation, and humidity data, which are key parameters for flood prediction, as input data. Based on the LSTM and GRU models, which have already proven time-series data prediction performance in many research fields, different input datasets were constructed using the ASOS(Automated Synoptic Observing System) data and AWS(Automatic Weather System) data provided by the Korea Meteorological Administration, and performance comparison experiments were conducted. As a result, the best results were obtained when using ASOS data. Through this paper, a performance comparison experiment was conducted according to the input data, and as a future study, it is thought that it can be used as an initial study to develop a system that can make an evacuation decision in advance in connection with the flood risk determination model.

  • PDF

Estimation of reaction forces at the seabed anchor of the submerged floating tunnel using structural pattern recognition

  • Seongi Min;Kiwon Jeong;Yunwoo Lee;Donghwi Jung;Seungjun Kim
    • Computers and Concrete
    • /
    • v.31 no.5
    • /
    • pp.405-417
    • /
    • 2023
  • The submerged floating tunnel (SFT) is tethered by mooring lines anchored to the seabed, therefore, the structural integrity of the anchor should be sensitively managed. Despite their importance, reaction forces cannot be simply measured by attaching sensors or load cells because of the structural and environmental characteristics of the submerged structure. Therefore, we propose an effective method for estimating the reaction forces at the seabed anchor of a submerged floating tunnel using a structural pattern model. First, a structural pattern model is established to use the correlation between tunnel motion and anchor reactions via a deep learning algorithm. Once the pattern model is established, it is directly used to estimate the reaction forces by inputting the tunnel motion data, which can be directly measured inside the tunnel. Because the sequential characteristics of responses in the time domain should be considered, the long short-term memory (LSTM) algorithm is mainly used to recognize structural behavioral patterns. Using hydrodynamics-based simulations, big data on the structural behavior of the SFT under various waves were generated, and the prepared datasets were used to validate the proposed method. The simulation-based validation results clearly show that the proposed method can precisely estimate time-series reactions using only acceleration data. In addition to real-time structural health monitoring, the proposed method can be useful for forensics when an unexpected accident or failure is related to the seabed anchors of the SFT.